COMPUTATIONAL FLUID DYNAMICS SIMULATION OF THE COMBUSTION PROCESS, EMISSION FORMATION AND THE FLOW FIELD IN AN IN-DIRECT INJECTION DIESEL ENGINE

Abstract

In the present paper, the combustion process and emission formation in the ister 8.1 I.D.I Diesel engine have been investigated using a Computational luid Dynamics (CFD) code. The utilized model includes detailed spray tomization, mixture formation and distribution model which enable odeling the combustion process in spray/wall and spray/swirl interactions long with flow configurations. The analysis considers both part load and ull load states. The global properties are presented separately resolved for he swirl chamber (pre-chamber) and the main chamber. The results of odel verify the fact that the equal amount of the fuel is burned in the main nd pre-chamber at full load state while at part load the majority of the fuel s burned in the main chamber. Also, it is shown that the adherence of fuel pray on the pre-chamber walls is due to formation of a stagnation zone hich prevents quick spray evaporation and plays an important role in the ncrease of soot mass fractions at this zone at full load conditions. The imulation results, such as the mean in-cylinder pressure, heat release rate nd exhaust emissions are compared with the experimental data and show ood agreement. This work also demonstrates the usefulness of multidimensional odeling for complex chamber geometries, such as in I.D.I iesel engines, to gain more insight into the flow field, combustion process nd emission formation.

Dates

  • Submission Date2011-12-18
  • Revision Date2012-04-08
  • Acceptance Date2012-04-20

DOI Reference

10.2298/TSCI111218108B

References

  1. Jafarmadar S, Shafee S, Barzegar R, Numerical Investigation of the Effect of Fuel Injection Mode on Spray-Wall Impingement and Combustion Process in a Direct Injection Diesel Engine at full load state, Thermal Science Intl. Sci. Journal (2010), 14 (4): 1039-1049, DOI: 10.2298/TSCI10041039J
  2. Jafarmadar S, Khalilarya SH, Shafee S, Barzegar R, Modeling the Effect of Spray/Wall Impingement on Combustion Process and Emission in a D.I. Diesel Engine, Thermal Science Intl. Sci. Journal (2009), 13 (3): 23-33, DOI: 10.2298/TSCI0903023J.
  3. Heywood JB. Internal combustion engine fundamental. New York: McGraw Hill; 1988.
  4. Benson RS, Whitehouse ND. Internal combustion engines. Oxford: Pergamon Press; 1979.
  5. Ferguson CR. Internal combustion engines. New York: John Wiley; 1986.
  6. Obert EF. Internal combustion engines and air pollution. New York: Intext Education Publ.; 1993. 15
  7. Patterson DJ, Henein NA. Emissions from combustion engines and their control. Michigan: Science Publ.; 1972.
  8. Uludogan A, Foster DE, Reitz RD. Modeling the effect of engine speed on the combustion process and emissions in a DI Diesel engine. SAE Paper 1996; 962056.
  9. Sanli A, Ozensen AN, Kilicaslan I, Canakci M. The influence of engine speed and load on the heat transfer between gases and in-cylinder walls at fired and motored conditions of an I.D.I Diesel engine. Applied Thermal Eng 2008; 28:1395-1404.
  10. Canakci M, Ozensen AN, Turkcan A. Combustion analysis of preheated crude sunflower oil in an I.D.I Diesel engine. Biomass and Bioenergy 2009; 33:760-767.
  11. Selim MYE, Radwan MS, Elfeky SM. Combustion of jojoba methyl ester in an indirect injection Diesel engine. Renewable Energy 2003; 28:1401-1420.
  12. Celikten I. An experimental investigation of the effect of the injection pressure on engine performance and exhaust emission in indirect injection Diesel engines. Applied Thermal Eng 2003; 23: 2051-2060.
  13. Parlak A, Yasar H, Hasimoglu C, Kolip A. The effects of injection timing on NOx emissions of a low heat rejection indirect Diesel injection engine. Applied Thermal Eng 2005; 25:3042-3052.
  14. Hotta Y, Nakakita K, Inayoshi M. Combustion improvement for reducing exhaust emissions in I.D.I Diesel engine. SAE Paper 1998; 980503.
  15. Pinchon P. Three dimensional modeling of combustion in a pre-chamber Diesel engine; SAE Paper 1989; 890666.
  16. Zellat M, Rolland TH, Poplow F. Three dimensional modeling of combustion and soot formation in an indirect injection Diesel engine; SAE Paper 1990; 900254.
  17. Strauss TS, Schweimer GW. Combustion in a swirl chamber Diesel engine simulation by computation of fluid dynamics; SAE Paper 1995; 950280.
  18. AVL FIRE user manual Ver. 8.5; 2006.
  19. Han Z, Reitz RD. Turbulence Modeling of Internal Combustion Engines Using RNG K-e Models. Combust Sci and Tech 1995; 106:267-295.
  20. Liu AB, Reitz RD. Modeling the effects of drop drag and break-up on fuel sprays. SAE Paper 1993; 930072.
  21. Dukowicz JK. Quasi-steady droplet change in the presence of convection. Informal report Los Alamos Scientific Laboratory; LA7997-MS.
  22. Naber JD, Reitz RD. Modeling engine spray/wall impingement; SAE Paper 1988; 880107.
  23. Halstead M, Kirsch L, Quinn C. The Auto ignition of hydrocarbon fueled at high temperatures and pressures - fitting of a mathematical model. J Combust Flame 1977; 30: 45-60.
  24. Patterson MA, Kong SC, Hampson GJ, Reitz RD. Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOx Emissions; SAE Paper 1994; 940523.
  25. Mohammahi A. "Ignition of dual fuel engines by using free radicals existing in EGR gases". PHD thesis. Faculty of mechanical engineering of Tabriz University; Iran 2008.
  26. Carsten B. Mixture formation in internal combustion engines. Springer publications; 2006.
Volume 17, Issue 1, Pages11 -23