THE HEAT AND FLUID FLOW ANALYSIS FOR WATER HEATER

Abstract

In this paper, the heat transfer and fluid flow are studied for the water heater of RV cars, in which the hot water is heated by the combustion energy of liquefied petroleum gases. Three types of combustion tubes are performed in this investigation, which are circular tube, elliptic tube and elliptic tube with screwed wire inserted. The heat transfer performances of numerical simulation results are compared with those of the experimental works; they are in good trend agreement. The elliptic combustion tube performs better than the circular one, which indicates the average 7% energy saving for the elliptic combustion tube and 12% energy saving for the elliptic combustion tube with screwed wire under static heating.

Dates

  • Submission Date2010-07-12
  • Revision Date2010-09-16
  • Acceptance Date2010-11-11

DOI Reference

10.2298/TSCI11S1081L

References

  1. Furuhata, T., et al., Performance of Numerical Spray Combustion Simulation, Energy Conversion and Management, 38 (1997), 10-13, pp. 1111-1122
  2. Koh, P. T. L., Nguyen, T. V., Jorgensen, F. R. A., Numerical Modeling of Combustion in a Zinc Flash Smelter, Applied Mathematical Modeling, 22 (1998), 11, pp. 941-948
  3. Mitsuru, Y., et al., Modeling of Eddy Characteristic Time in LES for Calculating Turbulent Diffusion Flame, International Journal of Heat and Mass Transfer, 45 (2002), 11, pp. 2343-2349
  4. Yin, C., et al., Investigation of the Flow, Combustion, Heat-transfer and Emissions from a 609 MW Utility Tangentially Fired Pulverized-Coal Boiler, Fuel, 81 (2002), 8, pp. 997-1006
  5. Raafat, G. S., Janusz, A. K., Numerical Modeling and TGA/FTIR/GCMS Investigation of Fibrous Residue Combustion, Journal of Biomass & Bioenergy, 18 (2000), 5, pp. 391-404
  6. Roux, S., et al., Studies of Mean and Unsteady Flow in a Swirled Combustor Using Experiments, Acoustic Analysis, and Large Eddy Simulations, Combustion and Flame, 141 (2005), 1-2, pp. 40-54
  7. Yutaka, S., et al., Heat Transfer Improvement and NOx Reduction by Highly Preheated Air Combustion, Energy Conversion and Management, 38 (1997), 10-13, pp.1061-1071
  8. Zhang, J., Nieh, S., Swirling, Reacting, Turbulent Gas-Particle Flow in a Vortex Combustor, Powder Technology, 112 (2000), 1-2, pp.70-78
Volume 15, Issue 11, Pages81 -86