NATURAL CONVECTION IN SQUARE ENCLOSURES DIFFERENTIALLY HEATED AT SIDES USING ALUMINA-WATER NANOFLUIDS WITH TEMPERATURE-DEPENDENT PHYSICAL PROPERTIES
Abstract
Laminar natural convection of Al2O3 + H2O nanofluids inside square
avities differentially heated at sides is studied numerically. A computational
ode based on the SIMPLE-C algorithm is used for the solution of the system
f the mass, momentum and energy transfer governing equations. Assuming
hat the nanofluid behaves like a single-phase fluid, these equations are the
ame as those valid for a pure fluid, provided that the thermophysical
roperties appearing in them are the nanofluid effective properties. The
hermal conductivity and dynamic viscosity of the nanofluid are calculated
y means of a couple of empirical equations based on a wide variety of
xperimental data reported in the literature. The other effective properties
re evaluated by the conventional mixing theory. Simulations are performed
or different values of the nanoparticle volume fraction in the range 00.06,
he diameter of the suspended nanoparticles in the range 25 100 nm, the
emperature of the cooled sidewall in the range 293313 K, the temperature
f the heated sidewall in the range 298343 K, and the Rayleigh number of
he base fluid in the range 103107. All computations are executed in the
ypothesis of temperature-dependent effective properties. The main result
btained is the existence of an optimal particle loading for maximum heat
ransfer, that is found to increase as the size of the suspended nanoparticles
s decreased, and the nanofluid average temperature is increased.
Dates
- Submission Date2012-03-28
- Revision Date2012-01-31
- Acceptance Date2012-05-02
References
- Khanafer, K., Vafai, K., Lightstone, M., Buoyancy-driven heat transfer enhancement in a twodimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer, 46 (2003), pp. 3639- 3653
- Jou, R.-Y., Tzeng, S.-C., Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures, Int. Comm. Heat Mass Transfer, 33 (2006), pp. 727-736
- Oztop, H. F., Abu-Nada, E., Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29 (2008), pp. 1326-1336
- Abu-Nada, E., Oztop, H. F., Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid, Int. J. Heat Fluid Flow, 30 (2009), pp. 669-678
- Kahveci, K., Buoyancy driven heat transfer of nanofluids in a tilted enclosure, J. Heat Transfer, 132 (2010), p. 062501
- Kefayati, GH. R., Hosseinizadeh, S. F., Gorji, M., Sajjadi, H., Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid, Int. Comm. Heat Mass Transfer, 38 (2011), pp. 798-805
- Lai, F.-H., Yang, Y.-T., Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure, Int. J. Thermal Sciences, 50 (2011), pp. 1930- 1941
- Abu-Nada, E., Masoud, Z., Oztop, H. F., Campo, A., Effects of nanofluid variable properties on natural convection in enclosures, Int. J. Thermal Sciences, 49 (2010), pp. 479-491
- Lin, K. C., Violi A., Natural convection heat transfer of nanofluids in a vertical cavity: Effects of non-uniform particle diameter and temperature on thermal conductivity, Int. J. Heat Fluid Flow, 31 (2010), pp. 236-245
- Abu-Nada E., Chamkha A. J., Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO-EG-Water nanofluid, Int. J. Thermal Sciences, 49 (2010), pp.2339- 2352
- Maxwell-Garnett, J. C., A Treatise on Electricity and Magnetism, 3rd ed., Dover, New York, USA, 1954.
- Brinkman, H. C., The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20 (1952), p. 571
- Hamilton, R. L., Crosser, O. K., Thermal conductivity of heterogeneous two component systems, Ind. Eng. Chem. Fundam., 1 (1962), pp. 187-191
- Bruggemann, D. A. G., Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen, Ann. Phys., 24 (1935), pp. 636-679
- Eapen, J., Williams, W. C., Buongiorno, J., Hu, L.-W., Yip, S., Rusconi, R., Piazza, R. , Meanfield versus microconvection effects in nanofluid thermal conduction. Phys. Rev. Lett., 99 (2007), paper No. 095901
- Buongiorno, J., et al., A benchmark study on the thermal conductivity of nanofluids, J. Appl. Phys., 106 (200), paper No. 094319
- Das, S. K., Putra, N., Thiesen, P., Roetzel, W., Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125 (2003), pp. 567-574
- Li, C. H., Peterson, G. P., Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), J. Appl. Phys., 99 (2006), paper No. 084314
- Yu, W., Xie, H., Chen, L., Li, Y., Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles, Powder Tecnology, 197 (2010), pp. 218-221
- Chen, H., Ding, Y., Tan, C., Rheological behaviour of nanofluids, New Journal of Physics, 9 (2007), paper No. 367
- Chen, H., Ding, Y., He, Y., Tan, C., Rheological behaviour of ethylene glycol based titania nanofluids, Chem. Phys. Lett., 444 (2007), pp. 333-337
- Chevalier, J., Tillement, O., Ayela, F., Rheological properties of nanofluids flowing through microchannels, Appl. Phys. Lett., 91 (2007), paper No. 233103
- Einstein, A., Eine neue Bestimmung der Molekuldimension, Ann. Phys., 19 (1906), pp. 289-306
- Einstein, A., Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Molekuldimension, Ann. Phys., 34 (1911), pp. 591-592
- Putra, N., Roetzel, W., Das, S. K., Natural convection of nano-fluids, Heat Mass Transfer, 39 (2003), pp. 775-784
- Nnanna, A. G. A., Experimental model of temperature-driven nanofluid, J. Heat Transfer, 129 (2007), pp. 697-704
- Ho, C. J., Liu, W. K., Chang, Y. S., Lin, C. C., Natural convection heat transfer of aluminawater nanofluid in vertical square enclosures: An experimental study, Int. J. Thermal Sciences, 49 (2010), pp. 1345-1353
- Corcione, M., Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls, Int. J. Thermal Sciences, 49 (2010), pp. 1536- 1546
- Chang, B. H., Mills, A. F., Hernandez, E., Natural convection of microparticle suspensions in thin enclosures, Int. J. Heat Mass Transfer, 51 (2008), pp. 1332-1341
- Williams, W., Buongiorno, J., Hu, L.-W., Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes, J. Heat Transfer, 130 (2008), 042412
- Sommers, A. D., Yerkes, K. L., Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid, J. Nanopart. res., 12 (2009), pp. 1003-1014
- Rea, U., McKrell, T., Hu, L.-W., Buongiorno, J., Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids, Int. J. Heat Mass Transfer, 52 (2009), pp. 2042-2048
- Das, S. K., Putra, N., Roetzel, W., Pool boiling characteristics of nano-fluids, Int. J. Heat Mass Transfer, 46 (2003), pp. 851-862
- Prasher, R., Song, D., Wang, J., Phelan, P., Measurements of nanofluid viscosity and its implications for thermal applications, Appl. Phys. Lett., 89 (2006), paper No. 133108
- He, Y., Jin, Y., Chen, H., Ding, Y., Cang, D., Lu, H., Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transfer, 50 (2007), pp. 2272-2281
- Kays, W., Crawford, M., Weigand, B., Convective Heat and Mass Transfer, 4th ed., Mc Graw- Hill Companies, Inc., New York, NY, USA, 2005.
- Corcione, M., Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy Conv. Manag., 52 (2011), pp. 789-793
- Keblinski, P., Phillpot, S. R., Choi, S. U. S., Eastman, J. A., Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer, 45 (2002), pp. 855- 863
- Pak, B. C., Cho, Y. I., Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer, 11 (1998) pp. 151-170
- Xuan, Y., Roetzel, W., Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43 (2000), pp. 3701-3707
- Van Doormaal, J. P., Raithby, G. D., Enhancements of the simple method for predicting incompressible fluid flows, Num. Heat Transfer, 11 (1984), pp. 147-163
- Patankar, S. V., Spalding, D. B., A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transfer, 15 (1972), pp. 1787-1797
- Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publ. Co., Washington, DC, USA, 1980.
- Leonard, B. P., A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comp. Meth. in Appl. Mech. Engng., 19 (1979), pp. 59-78
- de Vahl Davis, G., Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Num. Meth. Fluids, 3 (1983), pp. 249-264
- Mahdi, H. S., Kinney, R. B., Time-dependent natural convection in a square cavity: application of a new finite volume method, Int. J. Num. Meth. Fluids, 11 (1990), pp. 57-86
- Hortmann, M., Peric, M., Scheuerer, G., Finite volume multigrid prediction of laminar natural convection: bench-mark solutions, Int. J. Num. Meth. Fluids, 11 (1990), pp. 189-207
- Wan, D. C., Patnaik, B. S. V., Wei, G. W., A new benchmark quality solution for the buoyancydriven cavity by discrete singular convolution, Num. Heat Transfer, 40 (2001), pp. 199-228
- Bejan, A., Convection Heat Transfer, 3rd ed., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2004.
- Incropera, F. P., DeWitt, D. P., Bergman, T. L., Lavine, A. S., Fundamentals of Heat and Mass Transfer, 6th ed., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2007.