Experimental studies of temperature separation and flow field for different geometrical parameters in Ranque-Hilsch vortex tube

Abstract

Experimental studies are performed to investigate the effect of geometrical parameters on temperature eparation and flow field in the vortex tube. Inlet dimensions, cold orifice diameter, length and diameter of ortex tube are the main geometrical parameters taken into account. Experiments show that most of the emperature separation happens near inlet for the length considered. Inlet nozzle with lower aspect ratio gives etter temperature separation. Temperature separation is further increased when convergent divergent nozzle is sed. Flow field studies on different geometrical parameters show that number of helical turns and residence ime increase with temperature separation. Experimental studies on scale effect are discussed.

Dates

  • Submission Date2011-09-21
  • Revision Date2012-03-29
  • Acceptance Date2012-04-01

DOI Reference

10.2298/TSCI110921047M

References

  1. R. Hilsch. The use of expansion of gases in a centrifugal field as cooling process. The review of scientific instruments, 18 (1947), 2, pp. 108-113
  2. S. Martynovskii and V. P. Alekseev. Investigation of the vortex thermal separation effect for gases and vapors. Soviet Physics, 1 (1957),10, pp. 2233-2243
  3. H. Takahama. Studies on vortex tubes (1) experiments on efficiency of energy separation (2) on profiles of velocity and temperature. Bulletin of JSME, 8 (1965), 31, pp. 433-440
  4. C. U. Linderstrom-lang. Gas separation in the Ranque-Hilsch vortex tube. International Journal of Heat and Mass Transfer, 7 (1964), pp. 1195-1206
  5. M. H. Saidi and M. S. Valipour. Experimental modeling of vortex tube refrigerator. Applied thermal engineering, 23 (2003), pp. 1971-1980
  6. N. F. Aljuwayhel, G. F. Nellis, and S. A. Klein. Parametric and internal study of the vortex tube using a CFD model. International journal of refrigeration, 28 (2005), 3, pp. 442-450
  7. P. Promvonge and S. Eiamsa-ard. Investigation on the vortex thermal separation in a vortex tube refrigerator. Science Asia, 31 (2005), pp. 215-223
  8. P. K. Singh, R. G. Tathgir, D. Gangacharyulu, and G. S. Grewal. An experimental performance evaluation of vortex tube. IE Journal -MC, 84 (2004), pp. 149-153
  9. Behera et. al. Numerical investigation on flow behavior and energy separation in Ranque-Hilsch vortex tube. International Journal of Heat and Mass Transfer, 51 (2008), 25-26, pp. 6077-6089
  10. Behera et. al.. CFD analysis and experimental investigations towards optimizing the parameters of Ranque- Hilsch vortex tube. International Journal of Heat and Mass Transfer, 48 (2005), 10, pp. 1961-1973
  11. O. Aydin and M. Baki. An experimental study on the design parameters of a counter-flow vortex tube. Energy, 31 (2006), 14, pp. 2427-2436
  12. J. E. Lay. Experimental and Analytical Study of Viscous Compressible Flow in a Uniflow Vortex Tube. Ph.D thesis, University of Michigan, Ann Arbor, Michigan, United States, 1956.
  13. U. Scheper. The vortex tube; internal flow data and a heat transfer theory. Journal of ASRE, Refrigeration Engg., 59 (1951), pp.985-989
  14. J. P. Hartnett and E. R. G. Eckert. Experimental study of the velocity and temperature distribution in a high velocity vortex-type flow. Trans Am. Soc. Mech Engrs. Series C, J. Heat Transfer, 79 (1976), pp. 751-758