MHD FLOW OF NANOFLUID OVER PERMEABLE STRETCHING SHEET WITH CONVECTIVE BOUNDARY CONDITIONS

Abstract

Analysis has been carried out for the magnetohydrodynamic (MHD) boundary layer flow of nanofluid. The flow is caused by a permeable stretching sheet. Convective type boundary conditions are employed in modeling the heat and mass transfer process. Appropriate transformations reduce the nonlinear partial differential equations to ordinary differential equations. The convergent series solutions are constructed. Graphical results of different parameters are discussed. The behaviors of Brownian motion and thermophoretic diffusion of nanoparticles have been examined. The dimensionless expressions of local Nusselt and local Sherwood numbers have been evaluated and discussed.

Dates

  • Submission Date2014-08-19
  • Revision Date2014-10-23
  • Acceptance Date2014-11-04
  • Online Date2014-12-14

DOI Reference

10.2298/TSCI140819139H

References

  1. Choi, S. U. S., Enhancing thermal conductivity of fluids with nanoparticles, ASME Int. Mech. Eng., 66 (1995), pp. 99-105.
  2. Das, S. K., Choi, S. U. S. and Yu, W., Nanofluids, Science and Technology, Wiley New Jersey 2007.
  3. Daungthongsuk, W. and Wongwises, S., A critical review of convective heat transfer nanofluids, Renew. Sustain. Eng. Rev. 11 (2007), 5, pp. 797-817.
  4. Trisaksri, V. and Wongwises, S., Critical review of heat transfer characteristics od nanofluids, Renew. Sustain. Eng. Rev. 11 (2007), 3, pp. 512-523.
  5. Wang, X. Q. and Mujumdar, A. S., Heat transfer characteristics of nanofluids: a review, Int. J. Therm. Sci., 46 (2007), 1, pp. 1-16.
  6. Wang, X. Q. and Mujumdar, A. S., A review on nanofluids-Part I: theoretical and numerical investigations, Brazilian J. Chem. Eng., 25 (2008), 4, pp. 613-630.
  7. Wang, X. Q. and Mujumdar, A. S., A review on nanofluids-Part II: experiments and applications, Brazilian J. Chem. Eng., 25 (2008), 4, pp. 631-648.
  8. Kakac, S. and Pramuanjaroenkij, A., Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass Transfer, 52 (2009), 13-14, pp. 3187-3196.
  9. Mohammed, H. A., Bhaskaran, G., Shuaib, N. H. and Saidur, R., Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review, Renew. Sustain. Eng. Rev., 15 (2011), 3, pp. 1502-1512.
  10. Dalkilic, A. S., Kayaci, N., Celen, A., Tabatabaei, M., Yildiz, O., Daungthongsuk, W. and Wongwises, S., Forced convective heat transfer of nanofluids: A review of the recent literature, Current Nanoscience, 8 (2012), 6, pp. 949-969.
  11. Buongiorno, J., Convective transport in nanofluids, ASME J. Heat Transf., 128 (2006), 3, pp. 240-250.
  12. Buongiorno, J. et al., A benchmark study on the thermal conductivity of nanofluids, J. Appl. Phys. 106 (2009), 094312.
  13. Turkyilmazoglu, M., Nanofluid flow and heat transfer due to a rotating disk, Computers and Fluids, 94 (2014), 1, pp. 139-146.
  14. Turkyilmazoglu, M., Unsteady convectionfFlow of some nanofluids past a moving vertical flat plate with heat transfer, J. Heat Transfer, 136 (2013), 3, 031704.
  15. Sheikholeslami, M., Ganji, D. D., Heat transfer of Cu-water nanofluid flow between parallel plates, Powder Technology, 235 (2013), pp. 873-879.
  16. Sheikholeslami, M., Hatami, M., Ganji, D. D., Analytical investigation of MHD nanofluid flow in a semi-porous channel, Powder Technology, 246 (2013), pp. 327-336.
  17. Xu, H., Pop, I., You, X. C., Flow and heat transfer in a nano-liquid film over an unsteady stretching surface, Int. J. Heat and Mass Transfer, 60 (2013), pp. 646-652.
  18. Rashidi, M. M., Abelman, S., Mehr, N. F., Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Int. J. Heat and Mass Transfer, 62 (2013), pp. 515-525.
  19. Niu, J., Fu, C., Tan, W. C., Slip flow and heat transfer of a non-Newtonian nanofluid in a microtube, Plos One, 7 (2012), 5, e37274.
  20. Khalili, S., Dinarvand, S., Hosseini, R., Tamim, H., Pop, I., Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid, Chinese Phy. B, 23 (2014), 4, 048203.
  21. Sheikholeslami, M., Ellahi, R., Ashorynejad, H. R., Domairry, G., Hayat, T., Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium, J. Comp. Theo. Nanosci., 11 (2014), 2, pp. 486-496.
  22. Alsaedi, A., Awais, M., Hayat, T., Effects of heat generation/absorption on stagnation point flow of nanofluid over a surface with convective boundary conditions, Comm. Nonlinear Sci. Num. Simul., 17 (2012), 11, pp. 4210-4223.
  23. Khan, J. A., Mustafa, M., Hayat, T., Farooq, M. A., Alsaedi, A., Liao, S. J., On model for three-dimensional flow of nanofluid: An application to solar energy, J. Molecular Liquids, 194 (2014), pp. 41-47.
  24. Crane, L. J., Flow past a stretching plate, J. Appl. Math. Phys. (ZAMP), 21 (1970), pp. 645-647.
  25. Mukhopadhyay, S., Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation, Ain Shams Eng. J., 4 (2013), 3, pp. 485-491.
  26. Bhattacharyya, K. , Mukhopadhyay, S., Layek, G. C., and Pop, I., Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet, Int. J. Heat Mass Transfer, 55 (2012), 11-12, pp. 2945-2952.
  27. Turkyilmazoglu, M., Exact solutions for two-dimensional laminar flow over a continuously stretching or shrinking sheet in an electrically conducting quiescent couple stress fluid, Int. J. Heat Mass Transfer, 72 (2014), pp. 1-8.
  28. Turkyilmazoglu, M., A note on micropolar fluid flow and heat transfer over a porous shrinking sheet, Int. J. Heat and Mass Transfer, 72 (2014), pp. 388-391.
  29. Sheikholeslami, M., Ellahi, R., Ashorynejad, H. R., Donairry, G. and Hayat, T., Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium, J. Comp. Theo. Nanosci., 11 (2014), 2, pp. 486-496.
  30. Sheikholeslami, M. and Ganji, D. D., Three dimensional heat and mass transfer in a rotating system using nanofluid, Powder Technology, 253 (2014), pp. 789-796.
  31. Ibrahim, W., Shankar, B. and Nandeppanavar, M. M., MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet, Int. J. Heat and Mass Transfer, 56 (2013), 1-2, pp. 1-9.
  32. Malvandi, A., Hedayati, F. and Ganji, D. D., Slip effects on unsteady stagnation point flow of a nanofluid over a stretching sheet, Powder Technology, 253 (2014), pp. 377-384.
  33. Rashidi, M. M., Ali, M., Freidoonimehr, N., Rostami, B., Hossian, A., Mixed convection heat transfer for viscoelastic fluid flow over a porous wedge with thermal radiation, Adv. Mech. Eng., 2014 (2014) 10, 735939.
  34. Farooq, U., Hayat, T., Alsaedi, A., Liao, S. J., Heat and mass transfer of two-layer flows of third-grade nanofluids in a vertical channel, Appl. Mathe. Comp., 242 (2014), pp. 528-540.
  35. Shehzad, S. A., Alsaedi, A., Hayat, T., Alhuthali, M. S., Thermophoresis particle deposition in mixed convection three-dimensional radiative flow of an Oldroyd-B fluid, J. Taiwan Institute of Chemical Engineers, 45 (2014), 3, pp. 787-794.
  36. Awais, M., Hayat, T., Alsaedi, A., Asghar, S., Time-dependent three-dimensional boundary layer flow of a Maxwell fluid, Computers and Fluids, 91 (2014), pp. 21-27.
  37. Hayat, T., Shafiq, A., Alsaedi, A., Awais, M., MHD axisymmetric flow of third grade fluid between stretching sheets with heat transfer, Computers and Fluids, 86 (2013), pp. 103-108.
  38. Turkyilmazoglu, M., Solution of the Thomas--Fermi equation with a convergent approach, Comm. Nonlinear Sci. Num. Simul., 17 (2012), 11, pp. 4097-4103.
  39. Abbasbandy, S., Hashemi, M. S., Hashim, I., On convergence of homotopy analysis method and its application to fractional integro-differential equations, Quaestiones Math., 36 (2013), 1, pp. 93-105.
  40. Aziz, A., A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition, Comm. Nonlinear Sci. Num. Simul., 14 (2009), 4, pp. 1064-1068.
  41. Ishak, A., Similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition, Appl. Math. Comp., 217 (2010), 2, pp. 837-842.