SLIP EFFECTS ON FLOW, HEAT, AND MASS TRANSFER OF NANOFLUID OVER STRETCHING HORIZONTAL CYLINDER IN THE PRESCENCE OF SUCTION/INJECTION

Abstract

Two slip effects, Brownian diffusion and thermophoresis, on flow, heat, and mass transfer of an incompressible viscous nanofluid over a stretching horizontal cylinder in the presence of suction/injection are discussed numerically. The governing boundary layer equations are reduced to a system of ordinary differential equations. Mathematica has been used to solve such system after obtaining the missed initial conditions. Comparison of obtained numerical results is made with previously published results in some special cases and found to be in a good agreement.

Dates

  • Submission Date2014-05-12
  • Revision Date2014-10-26
  • Acceptance Date2014-11-04
  • Online Date2014-12-14

DOI Reference

10.2298/TSCI140512135E

References

  1. Schlichting, H., Boundary layer theory, 6th ed, New York: McGraw-Hill, 1968.
  2. Sakiadis, B. C., Boundary layer behavior on continuous solid surfaces: I. Boundary layer equations for two dimensional and axisymmetric flow, AIChE J., 7 (1961), pp. 26-28.
  3. Sakiadis, B. C., Boundary layer behaviour on continuous solid surfaces: II. Boundary layer equations on a continuous flat surface, AIChE J., 7 (1961), pp. 221-225.
  4. Crane, L. J., Flow past a stretching plane, Z Angew Math Phys, 21 (1970), pp. 645-647.
  5. Vleggaar, J., Laminar boundary layer behaviour on continuous accelerating surfaces, Chem. Eng. Sci., 32 (1977), pp. 1517-1525.
  6. Gupta, P. S, Gupta, A. S., Heat and mass transfer on a stretching sheet with suction or blowing, Can. J. Chem. Eng., 55 (1977), pp. 744-746.
  7. Soundalgekar, V. M., Ramana, T. V., Heat transfer past a continuous moving plate with variable temperature, Wärme- und Stoffubertragung, 14 (1980), pp. 91-93.
  8. Lin, H. T., Shih Y. P., Laminar boundary layer heat transfer along static and moving cylinder, J. Chin. Inst. Eng., 3 (1980), pp. 73-79.
  9. Lin, H. T, Shih, Y. P., Buoyancy effects on the laminar boundary layer heat transfer along vertically moving cylinder, J. Chin. Inst. Eng., 4 (1981), pp. 47-51.
  10. Banks, W. H. H., Similarity solutions of the boundary layer equation for a stretching wall, J. Mech. Theo. Appl., 2 (1983), pp. 375-392.
  11. Grubka, L. J., Bobba, K. M., Heat transfer characteristics of a continuous stretching surface with variable temperature, J. Heat Transfer, 107 (1985), pp. 248-250.
  12. Wang, C. Y., Fluid flow due to a stretching cylinder, Phys. of Fluids, 31 (1988), pp. 466-468.
  13. Wang, C. Y., Free convection on a vertical stretching surface, J. of App. Math and Mech., 69 (1989), pp. 418-420.
  14. Ali, M. E., Heat transfer characteristics of a continuous stretching surface, Wärme- und Stoffuberttragung, 29 (1994), pp. 227-234.
  15. Ali, M. E., On thermal boundary layer on a power law stretched surface with suction or injection, Int. J. Heat Fluid Flow, 16 (1995), pp. 280-290.
  16. Elbashbeshy, E. M. A., Heat transfer over a stretching surface with variable heat flux, J. Phys. D: Appl. Phys., 31 (1998), pp. 1951-1955.
  17. Raptis, A., Radiation and free convection flow through a porous medium, Int. Comm. in Heat and Mass Transf., 25 (1998), pp. 289-295.
  18. Takhar, H. S., Chamkha, A. J., Nath, G., Natural convection on a vertical cylinder embedded in a thermally stratified high porosity medium, Int. J. of Thermal Science, 41 (2002), pp. 83-93.
  19. Ishak, A., Nazar, R., Pop, I., Unsteady mixed convection boundary layer flow due to a stretching vertical surface, Arab J. for Sci. and Eng., 31 (2006), pp. 165-182.
  20. Ishak, A., Nazar, R., Pop, I., Magnetohydrodynamic (MHD) flow and heat transfer due to a stretching cylinder, Energy Conversion and Management, 49 (2008), pp. 3265-3269.
  21. Molla, Md. M., Paul, S. C., Hossain, Md. A., Natural convection flow from a horizontal cylinder with uniform heat flux in presence of a heat generation, Appl. Math. Modelling, 33 (2009), pp. 3226-3236.
  22. Bachok, N., Ishak, A., Mixed convection boundary layer flow over a vertical cylinder with a prescribed surface heat flux, European J. of Scientific Research, 34 (2009), pp. 46-54.
  23. Ishak, A., Nazar, R., Laminar boundary layer flow along a stretching cylinder, European J. of Scientific Research, 36 (2009), pp. 22-29.
  24. Elbashbeshy, E. M. A., Aldawody, D. A., Effects of thermal radiation and magnetic field on unsteady mixed convection flow and heat transfer over a porous stretching surface in the presence of internal heat generation/absorption, Int. J. of the Phys. Sci., 6 (2011), pp. 1540-1548.
  25. Elbashbeshy, E. M. A., Emam, T. G., El-Azab, M. S., Abdelgaber, K. M., Effect of magnetic field on flow and heat transfer over a stretching horizontal cylinder in the presence of a heat source/sink with suction/injection, J. of Applied Mechanical Engineering, 1 (2012), pp. 1-5, doi: 10.4172/2168-9873.1000106.
  26. Elbashbeshy, E. M. A., Emam, T. G., El-Azab, M. S., Abdelgaber, K. M., Laminar boundary layer flow along a stretching cylinder embedded in a porous medium, International J. of Physical Sciences, 7 (2012), pp. 3067-3072.
  27. Elbashbeshy, E. M. A., Emam, T. G., El-Azab, M. S., Abdelgaber, K. M., Laminar boundary layer flow along a stretching horizontal cylinder embedded in a porous medium in the presence of a heat source or sink with suction/injection, International J. of Energy and Technology, 4 (2012), pp. 1-6.
  28. Masuda, H., Ebata, A., Teramae, K., Hishinuma, N., Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles, Netsu Bussei, 7 (1993), pp. 227-233.
  29. Choi, S. U. S., Enhancing conductivity of fluids with nanoparticles, Proceedings, ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, 1995, pp. 99-105.
  30. Choi, S. U. S., Zhang. Z. G., Yu, W., Lockwood. F. E., Grulke E. A., Anomalously thermal conductivity enhancement in nanotube suspension, Appl. Phys. Lett., 79 (2001), pp. 2252-2254.
  31. Buongiorno, J., Convective transport in nanofluids, ASME J. Heat Transf., 128 (2006), pp. 240-250.
  32. Das, S. K., Choi. S. U. S., Yu. W., Pardeep, T., Nanofluids: Science and Technology, New Jersey, Wiley Interscience, 2007.
  33. Kakaç, S., Pramuanjaroenkij, A., Review of convective heat transfer enhancement with nanofluids, Int. J. of Heat and Mass Transf., 52 (2009), pp. 3187-3196.
  34. Bachok, N., Ishak, A., Pop, I., Boundary-layer flow of nanofluids over a moving surface in a flowing fluid, Int. J. of Thermal Sci., 49 (2010), pp. 1663-1668.
  35. Khan, W. A., Pop, I., Boundary-layer flow of nanofluid past a stretching sheet, Int. J. of Heat and Mass Transf., 53 (2010), pp. 2477-2483.
  36. Hamad, M. A.A., Analytical solution of natural convection flow of nanofluid over a linearly stretching sheet in the presence of magnetic field, Int. Comm. in Heat and Mass Transf., 38 (2011), pp. 487-92.
  37. Nazar, R., Tham, L., Pop, I., Ingham, D. B., Mixed convection boundary layer flow from a horizontal circular cylinder embedded in a porous medium filled with a nanofluid, Transport in Porous Media, 86 (2011), pp. 517-536.
  38. Bachok, N., Ishak, A., Pop, I., Boundary layer flow over a moving surface in a nanofluid with suction or injection, Acta Mech. Sin., 28 (2012), pp. 34-40.
  39. Hamad, M. A. A., Ferdows, M., Similarity solutions to viscous flow and heat transfer of nanofluid over nonlinearly stretching sheet, Appl. Math Mech.-Eng. Ed., 33 (2012), pp. 923-930.
  40. Tham, L., Nazar, R., Pop, I., Mixed convection boundary layer flow from a horizontal circular cylinder in a nanofluid, Int. J. of Numerical Methods for Heat & Fluid Flow, 22 (2012), pp. 576-606.
  41. Rabeti, M., Noghrehabadi, A., Ghanbarzadeh, A., Forced convection heat transfer over a horizontal plate embedded in a porous medium saturated with a nanofluid in the presence of heat sources, Advances in Energy Eng. (AEE), 1 (2013), pp. 46-51.
  42. Elbashbeshy, E. M. A., Emam, T. G., Abdel-wahed, M. S., Effect of heat treatment process with a new cooling medium (nanofluid) on the mechanical properties of an unsteady continuous moving cylinder, J. of Mechanical Science and Technology, 27 (2013), pp. 3843-3850.
  43. Habibi Matin, M., Jahangiri, P., Forced convection boundary layer magnetohydrodynamic flow of nanofluid over a permeable stretching plate with viscous dissipation, Thermal Science, 18 (2014), pp. S587-S598.
  44. Bogacki, P., Shampine, L. F., An efficient Runge-Kutta (4,5) pair, Computers & Mathematics with Applications, 32 (1996), pp. 15-28.