Numerical investigation of flow and thermal pattern in unbounded flow using nanofluid. (case study: laminar 2-D plane jet)

Abstract

In this article, a numerical study is carried out to analyze the effect of nanoparticle volume fraction over flow and thermal characteristics of laminar 2-D plane jet. Al23-water and TiO2-water nanofluids are considered in this investigation with lowest and highest values of particle volume concentration equals to 0 and 0.02 respectively. This paper propose four correlations for describing the relation between the solid volume fraction, δT and δU. The results show that the cross stream thermal diffusion depth and cross stream hydraulic diffusion depth are increased when particles volume concentration is increased and mean temperature and mean velocity decreases when the solid volume fraction is increased. The effects of nanoparticle volume fraction in velocity and temperature time histories are also studied and discussed.

Dates

  • Submission Date2013-03-30
  • Revision Date2014-09-19
  • Acceptance Date2014-09-20
  • Online Date2014-11-08

DOI Reference

10.2298/TSCI130330120A

References

  1. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, Developments and Applications of Non-NewtonianFlows 66 (1995) 99-105.
  2. S.M.S. Murshed, K.C. Leong, C.Yang, Thermophysical and electrokinetic properties of nanofluids - A critical review, Applied Thermal Engineering 28 (2008) 2109-2125.
  3. A.K. Santra, S. Sen, M. Chkroborty, Study of heat transfer due to laminar flow of copper -water nanofluid through two isothermally heated parallel plate, International Journal of Thermal Sciences 48 (2009) 391-400.
  4. M.H. Kayhani, H. Soltanzadeh, M. Nazari, Experimental analysis of turbulent convective heat transfer and pressure drop of Al2O3/water nanofluid in horizontal tube, Nanoletters 7 (2012) 45-54.
  5. C.T. Nguyen, N. Galanis, G. Polidori, S. Fohanno, C. V. Pota, A.L. Beche, An experimental study of confined and submerged impinging jet heat transfer using Al2O3-water nanofluid , International Journal of Thermal Sciences 48 (2009) 401-411.
  6. M.H. Kayhani, H. Soltanzadeh, M.M. Heyhat, M. Nazari, F. Kowsary, Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid, International Communications in Heat and Mass Transfer 39 (2012) 456-462.
  7. M.J. Maghrebi, M. Nazari, T. Armaghani, Forced Convection Heat Transfer of Nanofluids in a Porous Channel, Transport in Porous Media 93 (2012) 401-413.
  8. X.Q. Wang and A.S. Mujumdar, Heat transfer characteristic of nanofluid: a review, Internal Journal of Thermal Science 46 (2007) 1-19.
  9. A. Behzadmehr, M. Saffar- Avval, N. Galanis, Prediction of turbulent forced convection of a nanofluid in tube with uniform heat flux using a two phase approach. International Journal of Heat and Fluid Flow 28 (2007) 211-219.
  10. S.E.B. Maiga, C.T. Nguyen, N. Galanis, G. Roy, Heat transfer behaviors of nanofluids in a uniformly heated tube, Superlattices and Microstructures 35 (2004) 453-462.
  11. M.M. Heyhat and F. kowsary, Effect of particle migration on flow and convective heat transfer of nanofluids flowing through a circular pipe, ASME Journal of Heat Transfer 132 (2010) 062401
  12. F. Talebi, A.H. Mahmoudi, M. Shahi, Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid, International Communication in Heat and Mass Transfer 37 (2010) 79-90.
  13. M. Shahi, A.H. mahmoudi, F. Talebi, Numerical study of mixed convective cooling in a square cavity ventilated and partially heated from the below utilizing nanofluid, International Communications in Heat and Mass Transfer 37 (2010) 201-213.
  14. J. Lee, I. Mudawar, Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels, International Journal of Heat and Mass Transfer 50 (2007) 452-463.
  15. M.J. Maghrebi, T. Armaghani, F. Talebi, Effects of nanoparticle volume fraction in hydrodynamic and thermal characteristics of forced plane jet. Thermal Science Journal 16 (2012) 455-468.
  16. A. Konkachbaev, N.B. Morley, M. Abdou, Effect of initial turbulent intensity and velocity profile on liquid jets for IFE beam line protection, Fusion Engineering 64 (2002) 619-624.
  17. A. Konkachbaev, N.B. Morley, Stability and contraction of rectangular liquid metal jet in vacuum environment, Fusion Engineering 52 (2000) 1109-1114.
  18. W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated maxwell model, Journal of Nanoparticle Research 5 (2003) 167-171.
  19. C.T. Nguyen, F. Desgranges, G. Roy, N. Galanis , T.Mare, S. Boucher, H. Angue Mintsa, Temprature and particle-size dependent viscosity data for water-based nanofluids-Hysteresis phenomenon, International Journal of Heat and Fluid Flow 28 (2007) 1492-1506.
  20. W. Duangthongsuk, S. Wongwises, measurement of temperature-dependent thermal conductivity and viscosity of 2 TiO -water nanofluids, Experimental Thermal and Fluid Science 33 (2009) 706-714.
  21. H. Schilichting, Boundary-layer Theory, 8th ed, Springer-Verlag, 2000.
  22. S. Satake, T. Kunugi, Direct numerical simulation of an impinging jet into parallel disks, Int.J.Numer. Meth. Heat Fluid Flow 8 (1998) 768-780.
  23. L.R. Pauley, P. Moin, W.C. Reynolds, The structure of two-dimensional sepration, Journal of Fluid Mechanics 220 (1990) 397-411.
  24. M.J. maghrebi, J.Soria, Outflow boundary condition issues in DNS of three dimensional plane wake flow, Journal of Aerospace Science and Technology 3 (2006) 177-183.
  25. T. Armaghani, M.J. Maghrebi, DNS of forced incompressible free jet, 12th fluid dynamic conference, Babol, Iran, April 2009.
  26. S.K. Lele, Compact Finite Difference Scheme with Spectral-Like Resolution, Journal of Computational Physics 103 (1992) 16-43.
  27. A. Wray, M.Y. Hussaini, Numerical Experiments in Boundary Layer Stability, Proc. R. Soc. Lond. A. 392 (1984) 373-389.
  28. J.T. Stuart, on finite amplitude oscillation in laminar mixing layer, JFM. 29 (1967) 417-440.
  29. X.Q.Wang, A.S.Mujumdar, Heat transfer characteristics of nanofluids: a review, Internal Journal of Thermal Sciences 46 (2007) 1-19.
  30. B. Pak, Y. Cho, Hydrodynamic and Heat Transfer Study Of Dispersed Fluids with Submicron Metallic Oxide Particles, Experimental Heat Transfer 11 (1998) 151-170.