Influence of the welding parameters on the heat affected zone for aluminium welding

Abstract

This work analyzes the Heat Affected Zone in an aluminum alloy welded assembly using the Metal Inert Gas welding technique. Making use of numerical simulations of the involved thermal processes, the aluminum alloy cooling curve is calculated and the extension of the Heat Affected Zone is evaluated. The connection between this last parameter, the cooling rate, and the maximum obtained temperature is assessed. Additionally, the response surface method is exploited to fit the dependence of the Heat Affected Zone with the welding parameters and to optimize these parameters in order to minimize that region.

Dates

  • Submission Date2014-05-03
  • Revision Date2014-07-03
  • Acceptance Date2014-08-17
  • Online Date2014-09-06

DOI Reference

10.2298/TSCI140503106M

References

  1. Oluwole, O. I. and Ajibade O. J., Effect of Welding Current and Voltage on the Mechanical 275 Properties of Wrought (6063) Aluminium Alloy, Materials Research-Ibero-American Journal 276 of Materials, 13 (2010), 2, pp. 125-128. DOI No 10.1590/S1516-14392010000200002
  2. Miguel, V. et al, Optimization of GMAW process of AA 6063-T5 aluminum alloy butt joints 278 based on the response surface methodology and on the bead geometry, Revista de Metalurgia, 279 48, (2012), 5, pp. 333-350. DOI No 10.3989/revmetalm.1169
  3. Saleem, M. A. et al, Experimental Evaluation of Aluminum Bridge Deck System, Journal of 281 Bridge Engineering, 17 (2012), 1, pp. 97-106. DOI No 10.1061/(ASCE)BE.1943-5592.0000204
  4. E. Siewert, et al, Visualization of Gas Flows in Welding Arcs by the Schlieren Measuring 283 Technique, Welding Journal, 93 (2014), 1, p. 1S-5S.
  5. Schnick, M., et al, Visualization and Optimization of Shielding Gas Flows in Arc Welding, 285 Welding in the World, 56 (2012), 1-2, pp. 54-61.
  6. CEN Technical Committee, Eurocode 9: Design of aluminium structures. Part 1-1. General 287 Rules. BSI, 2009.
  7. Mitrovic, R. M. et al, Study on Impact Properties of Creep-Resistant Steel Thermally Simulated 289 Heat Affected Zone, Thermal Science, 16 (2012), 2, pp. 513-525. DOI No 290 10.2298/TSCI111006142M
  8. Madic, M. J. and Radovanovic, M. R., Analysis of the Heat Affected Zone in CO2 Laser Cutting 292 of Stainless Steel, Thermal Science, 16 (2012), 2, pp. S363-S373. DOI No 293 10.2298/TSCI120424175M
  9. Lazic, V. N. et al, Theoretical-Experimental Determining of Cooling Time (T(8/5)) in Hard 295 Facing of Steels for Forging Dies, Thermal Science, 14 (2010), 1, pp. 235-246. DOI No 296 10.2298/TSCI1001235L
  10. Coniglio N. and Patry, M., Measuring laser weldability of aluminium alloys using controlled 298 restraint weldability test, Science and Technology of Welding and Joining, 18 (2013), 7, pp. 573-299 580. DOI No 10.1179/1362171813Y.0000000137
  11. Meseguer-Valdenebro J. L., et al Calculation of t8/5 by Response Surface Methodology for 301 Electric Arc Welding Applications, Thermal Science, 18 (2014), 11, pp. S149-S158. DOI No 302 10.2298/TSCI130418162V
  12. Al-Sa'ady, M. H., et al, Finite Difference Simulation of Low Carbon Steel Manual Arc Welding, 304 Thermal Science, 15 (2011), 1, pp. 207-214.
  13. Leister B.M. and DuPont J.N., Fracture toughness of simulated heat affected zones in NuCu-140 306 steel, Welding Journal, 91 (2012), 2, p. 53s-58s.
  14. Vrouwenvelder, T., et al, Modelling of Hazards, Structural Engineering International, 22 308 (2012), 1, pp. 73-78.
  15. Arora, H. S., et al, Numerical simulation of temperature distribution using finite difference 310 equations and estimation of the grain size during friction stir processing, Materials Science and 311 Engineering A-Structural Materials Properties Microstructure and Processing, 543 (2012), pp. 312 231-242. DOI No 10.1016/j.msea.2012.02.081
  16. Estrems Amestoy, Manuel, et al, Numerical development for obtaining the temperature field in 314 stainless steels arc welding processes, Dyna, 84 (2009), 9, pp. 1-8,.
  17. Ho C. Y. and Lee, Y. C., Temperature fields in the fusion zone induced by a moving electron 316 beam, Journal of Mechanical Science and Technology, 21 (2007), 10, pp. 1707-1713,.
  18. Guo Z., et al, Numerical Simulation of Temperature Field for TIG Welding of Aluminum alloy 318 sheet Based on the SYSWELD, LAUBLSRUTISTR 24, CH-8717 Stafa-Zurich, Zurich 319 ,Switzerland, 2012, 472-475, pp. 1945-1949.
  19. Nguyen, N.T. et al, A analytical approximate solution for double ellipsoidal heat source in finite 321 thick plate, Welding Journal, 83 (2004), 3, pp. 82-s to 93-s,.
  20. Coniglio, N., et al, Phase formation in 6060/4043 aluminum weld solidification, Materials 323 Science and Engineering: A, 517 (2009), 1-2, pp. 321 - 327. DOI No 324 dx.doi.org/10.1016/j.msea.2009.03.087
  21. Totten George E. and MacKenzie, D. Scott, Handbook of Aluminum: Physical Metallurgy and 326 process, Marcel Dekker, New York, USA, 2003.
  22. Montgomery, C. and Myers, R.H. Response surface methodology: Process and product in 328 optimization using designed experiments, John Wiley&Sons, New York USA, 1995.
  23. Allen, Theodire T., Introduction to Engineering Statistics and Six Sigma. Springer, 2006.
  24. Ivanovic, I. B., et al, Numerical Study of Transient Three-Dimensional Heat Conduction 331 Problem with A Moving Heat Source, Thermal Science, 15 (2011), 1, pp. 257-266.
  25. M. U. Guide, The mathworks, Inc., Natick, MA, 5, 1998.
  26. Brungrab, R.J and Nelson, F., Effect of Welding Variables on Aluminum-Alloy Weldments, 334 Welding Journal, 52 (1973), 3, pp. S97-S103.