AN APPROXIMATE ANALYTICAL (INTEGRAL-BALANCE) SOLUTION TO A NONLINEAR HEAT DIFFUSION EQUATION

Abstract

The communication presents a closed form approximate solution of the nonlinear diffusion equation of a power-law nonlinearity of the diffusivity developed by the heat-balance integral method. The main step in the initial transformation of the governing equation avoiding the Kirchhoff transformation is demonstrated. The consequent application of the integral method is exemplified by a solution of a Dirichlet problem with an approximate parabolic profile. Cases with predetermined positive integer and optimized non-integer exponents have been analyzed.

Dates

  • Submission Date2014-03-26
  • Revision Date2014-04-19
  • Acceptance Date2014-06-13
  • Online Date2014-06-21

DOI Reference

10.2298/TSCI140326074H

References

  1. Hill, J.M., Similarity solutions for nonlinear diffusion- a new integration procedure, J. Eng, Math, 23 (1989), 1, pp.141-155;
  2. Prasad , S.N., and Salomon, J.B., A new method for analytical solution of a degenerate diffusion equation, Adv. Water Research, 28 (2005),10, pp. 1091-1101.
  3. N. F. Smyth, N.F., Hill,J.M., High-Order Nonlinear Diffusion, IMA Journal of Applied Mathematics, 40 (1988),1, pp. 73-86.
  4. Zel'dovich, Ya.B., Kompaneets, A. S. , On the theory of heat propagation for temperature dependent thermal conductivity, in: Collection Commemorating the 70th Anniversary of A. F. Joffe, Izv. Akad. Nauk SSSR, 1950, pp. 61-71.
  5. Buckmaster, J., Viscous sheets advancing over dry beds, J. Fluid Mech., 81 (1977),4, pp. 735-756.
  6. Marino, B. M., Thomas, L. P., Gratton, R., Diez, J. A., Betelu, S., Waiting-time solutions of a nonlinear diffusion equation: Experimental study of a creeping flow near a waiting front, Physical Review E, 54 (1996),3, pp, 2628-2636.
  7. Lonngren, K.E., Ames, W.F., Hirose, A., Thomas J., Field penetration into plasma with nonlinear conductivity, The Physics of Fluids, 17 (1974), 10., pp. 19191-1920.
  8. Khan, Z.H., Gul, R., Khan, W.A., Effect of variable thermal conductivity on heat transfer from a hollow sphere with heat generation using homotopy perturbation method, In Proc. ASME Summer Heat Transfer Conf, 2008, August 1-14, 2008, Article HT2008-56448, Jacksonville, Florida, USA.
  9. Pattle, R. E. Diffusion from an instantaneous point source with concentration-dependent coefficient, Quart.J. Mech. Appl. Math., 12 (1959), 4, pp. 407-409.
  10. Muskat, M., The Flow of Homogeneous Fluids through Porous Media, McGraw-Hill, New York,1937.
  11. Peletier, L.A., Asymptotic behavior of solutions of the porous media equations, SIAM J. Appl. Math, 21 (1971), 4, pp.542-551.
  12. Aronson, D.G., The porous medium equation, in Nonlinear Diffusion Problems, Lecture Notes in Math. 1224, A. Fasano and M. Primicerio, eds., Springer, Berlin, 1986, pp. 1-46.
  13. King, J.R., The isolation oxidation of silicon: The reaction-controlled case, SIAM J. Appl. Math., 49 (1989),4, pp.1064-1080.
  14. Lacey, A. A., Ockendon, J. R., Tayler, A. B. 1982, Waiting-time solutions of a nonlinear diffusion equation. SIAM J. appl. Math. 42 (1982),6, pp. 1252-1264.
  15. Atkinson, C., Reuter, G.E.H., Ridler-Rowe, C.J., Traveling wave solutions for some nonlinear diffusion equations, SIAM J. Appl. Math, 12 (1981), 6, 880- 892.
  16. Strunin, D.V., Attractors in confined source problems for coupled nonlinear diffusion, SIAM J. Appl. Math., 67 (2007) ,6, pp. 1654-1674,
  17. Nasseri, M.,Daneshbod, Y., Pirouz, M.D., Rakhshandehroo, Gh.R., Shirzad, A., New analytical solution to water content simulation in prorous media, J. Irrigation and Drainage Eng., ??, 2012, April, ??, 328-335.
  18. Hill, D.L., Hill, J.M., Similarity solutions for nonlinear diffusion-further exact solutions, J. Eng, Math, 24 (1990), 1, pp.109-124;
  19. Hill, J.M., Hill, D.L., On the derivation of first integrals for similarity solutions, J. Eng, Math, 25 (1991), 2, pp.287-299.
  20. Tomatis, D. Heat Conduction in nuclear fuel by the Kirchhoff transformation, Ann. Nucl. Energy., 57 (2013),July, pp.100-105,
  21. Knight, J.H., Philip, J.R., Exact solutions in nonlinear diffusion, J. Eng. Math. , 8 (1974), 3,pp. 219-227.
  22. Kolpakov, V.A., Novomelski, D.N., Novozhenin, M.P., Determination of the surface temperature of sample in region of its interaction with a nonelectrode plasma flow using the Kirchhoff transformation of a quadratic function, Technical Physics, 58 (2013), 11, pp.1554-1557.
  23. King, J.R., Integral results for nonlinear diffusion equations, J. Eng, Math, 25 (1991), 2, pp.191-205.
  24. Paripour, M., Babolian, E., Saeidian, J., Analytic solutions to diffusion equations, Math. Comp. Model., 51 (2010),5-6, pp.649-657.
  25. Walker, G.G., Scott, E.P., Evaluation of estimation methods for high unsteady heat fluxes from surface measurements, J. Thermophys. Heat Transfer, 12 (1998), 4, 543-551.
  26. Goodman T.R., Application of Integral Methods to Transient Nonlinear Heat Transfer, Advances in Heat Transfer, T. F. Irvine and J. P. Hartnett, eds., 1 (1964), Academic Press, San Diego, CA, pp. 51-122.
  27. Hristov, J. The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and Benchmark Exercises, Thermal Science, 13(2009), 2, pp.27-48.
  28. Mitchell, S. L., Myers, T. G., Application of standard and refined heat balance integral methods to onedimensional Stefan problems," SIAM Review, 52 (2010), 1, pp. 57-86.
  29. Langford , D., The heat balance integral method, Int. J. Heat Mass Transfer,16 (1973),12, pp.2424- 2428.
  30. Myers, J.G., Optimizing the exponent in the heat balance and refined integral methods, Int. Comm. Heat Mass Transfer, 36 (2009), 2, pp. 143-147.
  31. Sadighi, A., Ganji, D.D., Exact solutions of nonlinear diffusion equations by variational iteration method, Comp. Math Appl., 54 (2007), 7-8, pp. 1112-1121.
  32. Hristov, J., Integral-Balance Solution to a Nonlinear Heat Equation: Power-law temperature-dependent thermal diffusivity and fixed boundary conditions, Heat Mass Transfer (2014) in press.