AN APPROACH TO OBTAIN THE HEAT TRANSFER COEFFICIENT OF AQUEOUS SUCROSE SOLUTIONS IN AGITATED BOILING VESSELS
Abstract
In this study, the heat transfer mechanism under agitated pool boiling was examined experimentally. Aqueous sugar solutions were used in a centrically agitated vessel. The effects of the gap which is between the impeller edge and the flat bottom of the agitated vessel, the rotational impeller speed and impeller size were studied on the boiling heat transfer coefficient. A new Nusselt function depending on the Peclet number was suggested for the heat transfer mechanism.
Dates
- Submission Date2013-01-11
- Revision Date2013-09-29
- Acceptance Date2013-11-04
- Online Date2013-11-16
References
- Holven, A.L., Sucrose solutions: influence of pressure on boiling point elevation, Ind Eng Chem, 28 (1936), pp. 452-455
- Peres, A.M., Macedo, E.A., A modified UNIFAC model for the calculation of thermodynamic properties of aqueous and non-aqueous solutions containing sugar, Fluid Phase Equilib, (1997), pp. 139-474
- Adamiak, R., Karcz, J., Effects of type and number of impellers and liquid viscosity on the power characteristics of mechanically agitated gas-liquid systems, Chemical Papers, 61 (2007), 1, pp. 16-23, DOI: 10.2478/s11696-0006-0089-6
- Cudak, M., Karcz, J., Distribution of local heat transfer coefficient values in the wall region of an agitated vessel, Chemical Papers, 62 (2008), 1, pp. 92-99, DOI: 10.2478/s11696-007-0084-6
- Triveni, B., Vishwanadham, B., Venkateshwar, S., Studies on heat transfer to Newtonian and non-Newtonian fluids in agitated vessel, Heat Mass Transfer, 44, (2008), pp. 1281-1288, DOI: 10.1007/s00231-007-0364-2
- Peixoto, S.M.C., Nunhez, J.R., Improving internal flow of coiled stirred tanks, Proceedings, Second International Conference on CFD in the Minerals and Process Industries, Csiro, Melbourne, Australia, 1999, pp. 363-368
- Lakghomi, B., Kolahchian, E., Jalali, A., Ferhadi, F., Coil and Jacket's effects on internal flow behavior and heat transfer in stirred tanks, World Academy of Science, Engineering and Technology, 24, (2006), pp. 147-151
- Kawase,Y., Hoshino, M., Takahashi, T., Non Newtonian laminar boundary layer heat transfer in stirred tanks, Heat and Mass Transfer, 38, (2002), pp. 679-686, DOI: 10.1007/s002310100257
- Adib, T.A., Heyd, B., Vasseur, J., Experimental results and modeling of boiling heat transfer coefficients in falling film evaporator usable for evaporator design, Chemical Engineering and Processing, 48, (2009), pp. 961-968, DOI: 10.1016/j.cep.2009.01.004
- Gabsi, K., Trigui, M., Helal, A.N., Barrington, S., Taherian, A.R., CFD modeling to predict diffused date syrup yield and quality from sugar production process, Journal of Food Engineering, 118, (2013), pp. 205-212, DOI: 10.1016/j.jfoodeng.2013.04.011
- Rohsenow, W.M., A method of correlating heat transfer data for surface boiling of liquids, Trans ASME, 74 (1952), pp. 969-976
- Nukiyama, S., The maximum and minimum values of heat Q transmitted from metal to boiling water under atmosferic pressure, J Jpn Soc Mech Eng, 37 (1934), pp. 367-374
- Ozdemir, M., Pehlivan, H., Prediction of the boiling temprerature and heat flux in sugar-water solutions under pool boiling conditions, Heat Mass Transfer, 44 (2008), pp. 827-833, DOI: 10.1007/s00231-007-0310-3
- Hahne, E., Barthau, G., Heat trasfer and nucleation in pool boiling, Int. J. of Ther. Sci., 45 (2006), pp. 209-216
- Kotthoff, S., Gorenflo, D., Danger, E., Luke, A., Heat transfer and bubble formation in pool boiling: Effect of basic surface modifications for heat trasfer enhancement, Int. J. of Ther. Sci., 45 (2006), pp. 217-236
- Jeschar, R., Alt, R., Specht, E., Grundlagen der Warmeübertragung, Viola-Jeschar-Verlag Goslar, Germany, 1990
- www.wissenschaft-technik-ethik.de/wasser_eigenschaften.html#kap05
- Lipinski, G.W.V.R., Handbuch SüBungsmittel
- Kline, S.J., McClintock, F.A., Describing Uncertainties in Single Sample Experiments, Mech. Eng., 3, (1953), pp. 3
- Holman, J.P., Experimental methods for engineers, McGraw-Hill, Singapore, 1989
- www.sugartech.com
- Çengel, Y.A., Thermodynamics An Engineering Approach, McGraw-Hill, New York, 1998
- Kakaç, S., Örneklerle ısı transferi(Heat Transfer with applications), Güven Inc., İzmir, Turkey, 1972
- Incropera, F.P., Dewitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley and Sons Inc., New York, 1996
- Çengel, Y.A., Heat and Mass Transfer A Practical Approach, McGraw-Hill, New York, 2006
- Çengel, Y.A., Cimbala, J.M., Fluid Mechanics:Fundamentals and Applications, McGraw-Hill, New York, 2006