MIXED CONVECTION BOUNDARY-LAYER FLOW OF A MICRO POLAR FLUID TOWARDS A HEATED SHRINKING SHEET BY HOMOTOPY ANALYSIS METHOD
Abstract
A comprehensive study of two dimensional stagnation flow of an incompressible micro polar fluid with heat transfer characteristics towards a heated shrinking sheet is analyzed analytically. The main goal of this paper is to find the analytic solutions using a powerful technique namely the Homotopy Analysis Method (HAM) for the velocity and the temperature distributions and to study the steady mixed convection in two-dimensional stagnation flows of a micro polar fluid around a vertical shrinking sheet. The governing equations of motion together with the associated boundary conditions are first reduced to a set of self-similar nonlinear ordinary differential equations using a similarity transformation and are then solved by the HAM. Some important features of the flow and heat transfer for the different values of the governing parameters are analyzed, discussed and presented through tables and graphs. The heat transfer from the sheet to the fluid decreases with an increase in the shrinking rate. Micro polar fluids exhibit a reduction in shear stresses and heat transfer rate as compared to Newtonian fluids, which may be beneficial in flow and thermal control of polymeric processing.
Dates
- Submission Date2013-02-12
- Revision Date2013-06-23
- Acceptance Date2013-06-23
- Online Date2013-07-06
References
- Rashidi, M.M., Erfani, E., A new analytical study of MHD stagnation-point flow in porous media with heat transfer, Computers and Fluids, 40 (2011), 1, pp. 172-178
- Hiemenz, K., Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder, Weber, Berlin, Germany, 1911
- Chamkha, A.J., Hydromagnetic plane and axisymmetric flow near a stagnation point with heat generation, International Communications in Heat and Mass Transfer, 25 (1998), 2, pp. 269- 278
- Chamkha, A.J., Issa, C., Effects of heat generation/ absorption and thermophoresis on hydromagnetic flow with heat and mass transfer over a flat surface, International Journal of Numerical Methods for Heat & Fluid Flow, 10 (2000), 4, pp. 432-449
- Mahapatra, T.R, Gupta, A.S., Magnetohydrodynamic stagnation-point flow towards a stretching sheet, Acta Mechanica, 152 (2001), 1-4, pp. 191-196
- Nazar, R., Amin, N., Filip, D., Pop, I., Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet, International Journal of Engineering Science, 42 (2004), 11-12, pp. 1241-1253
- Abdelkhalek, M.M., The skin friction in the MHD mixed convection stagnation point with mass transfer, International Communications in Heat and Mass Transfer, 33 (2006), 2, pp. 249-258
- Layek, G.C., Mukhopadhyay, S., Samad, Sk.A., Heat and mass transfer analysis for boundary-layer stagnation point flow towards a heated porous stretching sheet with heat absorption/generation and suction/ blowing, International Communications in Heat and Mass Transfer, 34 (2007), 3, pp. 347-356
- Paullet, J., Weidman, P., Analysis of stagnation point flow toward a stretching sheet, International Journal of Non-Linear Mechanics, 42 (2007), 9, pp. 1084-1091
- Yian, L.Y., Amin, N., Pop, I., Mixed convection flow near a non orthogonal stagnation point towards a stretching vertical plate. International Journal of Heat and Mass Transfer, 50 (2007), 23-24, pp. 4855-4863
- Sharma, P.R., Singh, G., Effects of variable thermal conductivity and heat source/ sink on MHDflow near a stagnation point on a linearly stretching sheet, Journal of Applied Fluid Mechanics, 2 (2009), 1, pp. 13-21
- Wang, C.Y., Stagnation flow towards a shrinking sheet, International Journal of Non-Linear Mechanics, 43 (2008), 5, pp. 377-382
- Hayat, T., Abbas, Z., Sajid, M., MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface, Chaos, Solitons & Fractals, 39 (2009), 2, pp. 840-848
- Takhar, H.S., Kumari, M., Nath, G.G., Unsteady free convection flow under the influence of a magnetic field, Archive of Applied Mechanics, 63 (1993), 4-5, pp. 313-321
- Kumaran, V., Banerjee, A.K., Vanav Kumar, A., Vajravelu, K., MHD flow past a stretching permeable sheet, Applied Mathematics and Computation, 210 (2009), 1, pp. 26-32
- Hassanien, I.A., Al-arabi, T.H., Non Darcy unsteady mixed convection flow near the stagnation point on a heated vertical surface embedded in a porous medium with thermal radiation and variable viscosity, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 4, pp. 1366-1376
- Hayat, T., Abbas, Z., Javed, T., MHD stagnation point flow and heat transfer over a permeable surface through a porous space, Journal of Porous Media, 12 (2009), 2, pp. 183-195
- Hoyt, J.W., Fabula, A.G., The effect of additives on fluid friction, U.S. Naval Ordinance Test Station Report, 1964
- Eringen, A.C., Theory of Micro polar Continua, In Proceedings of the Ninth Midwestern Conference, Wisconsin, (Wiley) 16-18 August, New York, 1965, pp. 23
- Eringen, A.C., Simple Micro fluids, International Journal Engineering and Science, 2 (1964), 2, pp. 205-217
- Eringen, A.C., Theory of Micro polar Fluids, Journal of Mathematics and Mechanics, 16 (1966), pp. 1-18
- Ariman, T., Turk, M.A., Sylvester, N.D., Microcontinuum fluid mechanics-A review, International Journal of Engineering Science, 11 (1973), 8, pp. 905-930
- Ariman, T., Turk, M.A., Sylvester, N.D., Application of microcontinuum fluid mechanics, International Journal of Engineering Science, 12 (1974), 4, pp. 273-293
- Nazar, R., Amin, N., Filip, D., Pop, I., Stagnation point flow of a micropolar fluid towards a stretching sheet, International Journal of Non-Linear Mechanics, 39 (2004), 7, pp. 1227-1235
- Chang, C.-L., Numerical simulation of micropolar fluid flow along a flat plate with wall conduction and boundary effects, Journal of Physics D: Applied Physics, 39 (2006), 6, pp. 1132-1140
- Kumari, M., Pop I., Nath, G., Unsteady MHD boundary-layer flow and heat transfer of a non Newtonian fluid in the stagnation region of a two dimensional body, Magnetohydrodynamics, 43 (2007), 3, pp. 301-314
- Lok, Y.Y., Pop, I., Chamkha, A.J., Non-orthogonal stagnation point flow of a micropolar fluid, International Journal of Engineering Science, 45 (2007), 1, pp. 173-184
- Ishak, A., Nazar, R., Pop, I., Magnetohydrodynamic (MHD) flow of a micro polar fluid towards a stagnation point on a vertical surface, Computers & Mathematics with Applications, 56 (2008), 12, pp. 3188-3194
- Abel M.S., Nandeppanavar, M.M., Heat transfer in MHD viscoelastic boundary-layer flow over a stretching sheet with non uniform heat source/sink, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 5, pp. 2120-2131
- Ashraf, M., Anwar Kamal, M., Syed, K.S., Numerical study of asymmetric laminar flow of micropolar fluids in a porous channel, Computers & Fluids, 38 (2009), 10, pp. 1895-1902
- Ashraf, M., Anwar Kamal M., Syed, K.S., Numerical simulation of a micro polar fluid between a porous disk and a non-porous disk, Applied Mathematical Modelling, 33 (2009), 4, pp. 1933-1943
- Ashraf, M., Anwar Kamal, M., Syed, K.S., Numerical investigations of asymmetric flow of a micropolar fluid between two porous disks, Acta Mechanica Sinica, 25 (2009), 6, pp. 787-794
- Lyapunov, A.M., The general problem of the stability of motion, International Journal of Control, 55 (1992), 3, pp. 531-534
- Karmishin, A.V., Zhukov, A.I., Kolosov, V.G., Methods of Dynamics Calculation and Testing for Thin-Walled Structures, Mashinostroyenie, Moscow, Russia, 1990
- Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Boston and London, 1994
- Liao, S.J., Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC Press, Boca Raton, 2004
- Liao, S.J., On the analytic solution of magneto hydrodynamic flows of non-Newtonian fluids over a stretching sheet, Journal of Fluid Mechanics, 488 (2003), pp. 189-212
- Abbasbandy, S., Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method, Chemical Engineering Journal, 136 (2008), 2-3, pp. 144-150
- Allan, F.M., Construction of analytic solution to chaotic dynamical systems using the homotopy analysis method, Chaos, Solitons & Fractals, 39 (2009), 4, pp. 1744-1752
- Sajid, M., Siddiqui, A.M., Hayat, T., Wire coating analysis using MHD Oldroyd 8-constant fluid, International Journal of Engineering Science, 45 (2007), 2-8, pp. 381-392
- Rashidi, M.M., Siddiqui, A.M., Asadi, M., Application of homotopy analysis method to the unsteady squeezing flow of a second grade fluid between circular plates, Mathematical Problems in Engineering, 2010 (2010), doi:10.1155/2010/706840
- Rashidi, M.M., Domairry,G., Dinarvand, S., The Homotopy Analysis Method for Explicit Analytical Solutions of Jaulent-Miodek Equations, Numerical Methods for Partial Differential Equations 25 (2) (2009), pp. 430-439.
- Rashidi, M.M., Mohimanian Pour, S.A., Analytic Approximate Solutions for Unsteady Boundary-Layer Flow and Heat Transfer due to a Stretching Sheet by Homotopy Analysis Method, Nonlinear Analysis: Modelling and Control 15 (1) (2010), pp. 83-95.
- Ziabakhsh, Z., Domairry, G., Solution of the laminar viscous flow in a semi-porous channel in the presence of a uniform magnetic field by using the homotopy analysis method, Communications in Nonlinear Science and Numerical Simulation,14 (2009), 4, pp. 1284-1294
- Rashidi, M.M., Momoniat, E., Rostami, B., Analytic approximate solutions for MHD boundary-layer viscoelastic fluid flow over continuously moving Stretching surface by Homotopy Analysis Method with two auxiliary parameters, Journal of Applied Mathematics, 2012 (2012), doi:10.1155/2012/780415
- Bergman, T.L., Lavine, A.S., Incropera, F.P., Dewitt, D.P., Introduction to heat transfer, John Wiley and Sons Inc., New York, USA, Sixth edition, 2011
- Guram, G.S., Anwar, M., Micropolar flow due to a rotating disc with suction and injection, ZAMM-Journal of Applied Mathematics and Mechanics, 61 (1981), 11, pp. 589-595
- Takhar, H.S., Bhargava, R., Agraval, R.S., Balaji, A.V.S., Finite element solution of micropolar fluid flow and heat transfer between two porous discs, International Journal of Engineering Science, 38 (2000), 17, pp. 1907-1922