UNSTEADY FLOW AND HEAT TRANSFER ANALYSIS ON A SISKO FLUID

Abstract

In this paper, the heat transfer analysis is investigated for unsteady flow of a Sisko fluid. The governing nonlinear partial differential equations and boundary conditions are reduced to a system of nonlinear ordinary differential equations and boundary conditions by similarity transformations. The reduced system is solved analytically. The Homotopy analysis method (HAM) is implemented to find a family of traveling wave solutions of the governing nonlinear problem. The analytic solutions in the series form for various values of the power index are first developed using the HAM and then analyzed for its convergence. Finally, the velocity and temperature profiles are plotted for various values of the emerging dimensionless parameters of the problem and discussed. In addition a comparison between Sisko and Newtonian fluids is presented.

Dates

  • Submission Date2012-02-23
  • Revision Date2013-02-28
  • Acceptance Date2013-03-01
  • Online Date2013-04-13

DOI Reference

10.2298/TSCI120223013K

References

  1. Sisko, A.W., The flow of lubricating greases, Ind. Eng. Chem. Res., 50 (1958), pp. 1789-1792
  2. Cobble, M.H., Smith, P.R., Mulholland, G.P., Nonlinear motion equations for a non- Newtonian incompressible fluid in orthogonal coordinate system, Rheol. Acta, 12 (1973), pp. 212-216
  3. Akyildiz, F.T., et al., Implicit differential equation arising in the steady flow of a Sisko fluid, Appl. Math. Comput., 210 (2009), pp. 189-196
  4. Siddiqui, A.M., et al., On Taylor's scraping problem and flow of a Sisko fluid, Math. Model. Anal., 14 (2009), pp. 515-529
  5. Siddiqui, A.M., Ahmed, M., Ghori, Q.K., Thin film flow of non-Newtonian fluids on a moving belt, Chaos, Solitons & Fractals, 33 (2007), pp. 1006-1016
  6. Wang, Y., et al., Magneto-hydrodynamic peristaltic motion of a Sisko fluid in a symmetric or asymmetric channel, Physica A, 387 (2008), pp. 347-362
  7. Khan, M., Abbas, Z., Hayat, T., Analytic solution for flow of Sisko fluid through a porous medium, Transp. Porous Med., 71 (2008), pp. 23-37
  8. Abelman, S., Hayat, T., Momoniat, E., On the Rayleigh problem for a Sisko fluid in a rotating frame, Appl. Math. Comput., 215 (2009), pp. 2515-2520
  9. Khan, M., Abbas, Q., Duru, K., Magneto-hydrodynamic flow of a Sisko fluid in annular pipe: A numerical study, Int. J. Numer. Methods Fluids, 62 (2010), pp. 1169-1180
  10. Borhanifar, A., Abazari, R., Numerical study of nonlinear Schrödinger and coupled Schrödinger equations by differential transformation method, Opt. Commun., 283 (2010), pp. 2026-2031
  11. Borhanifar, A., Kabir, M.M., Hossein Pour, A., A Numerical Method for Solution of the Heat Equation with Nonlocal Nonlinear Condition, World Appl. Sci. J., 13 (2011), 11, pp. 2405-2409
  12. Abdi Aghdam, E., Kabir, M.M., Validation of a blowby model using experimental results in motoring condition with the change of compression ratio and engine speed, Experiment. Therm. Fluid Sci., 34 (2010), pp. 197-209
  13. He, J.H., Wu, G.C., Austin, F., The variational iteration method which should be followed, Nonlinear Sci. Lett. A, 1 (2010), 1, pp. 1-30
  14. He, J.H., Variational iteration method-Some recent results and new interpretations, J. Comput. Appl. Math., 207 (2007), pp. 3-17
  15. Rashidi, M.M., Shahmohamadi, H., Analytical Solution of Three-Dimensional Navier-Stokes Equations for the Flow near an Infinite Rotating Disk, Commun. Nonlinear Sci. Num. Simul., 14 (2009), 7, pp. 2999-3006
  16. He, J.H., New interpretation of homotopy perturbation method, Int. J. Mod. Phys. B, 20 (2006), 18, pp. 2561-2568
  17. Mohyud-Din, S.T., Noor, M.A., Homotopy perturbation method for solving partial differential equations, Zeitschrift für Naturforschung A- J. Phys. Sci., 64a (2009), pp. 157-170
  18. Siddiqui, A.M., Mahmood, R., Ghori, Q.K., Thin film flow of a third grade fluid on a moving belt by He's homotopy perturbation method, Int. J. Nonlinear Sci. Numer. Simul., 7(2006), 1, pp. 7-14
  19. Ganji, D.D., et al., Determination Of Temperature Distribution For Annular Fins With Temperature Dependent Thermal Conductivity By HPM, Thermal Science, 15 (2011), pp. 111-115
  20. Ganji, D.D., et al., Determination Of Temperature Distribution For Annular Fins With Temperature Dependent Thermal Conductivity By HPM, Thermal Science, 15 (2011), pp. 111-115
  21. He, J.H., Application of E-infinity theory to biology, Chaos, Solitons & Fractals, 28 (2006), 2, pp. 258-289
  22. Wang, S.Q., He, J.H., Nonlinear oscillator with discontinuity by parameter-expansion method, Chaos, Solitons & Fractals, 35 (2008), 4, pp. 688-691
  23. He, J.H., Wu, X.H., Exp-function method for nonlinear wave equations, Chaos, Solitons & Fractals, 30 (2006), 3, pp. 700-708
  24. He, J.H., Zhang, L.N., Generalized solitary solution and compacton-like solution of the Jaulent-Miodek equations using the Exp-function method, Phys. Lett. A, 372 (2008), pp. 1044-1047
  25. Kabir, M.M., Analytic solutions for generalized forms of the nonlinear heat conduction equation, Nonlinear Anal.: Real World Appl., 12 (2011), pp. 2681-2691
  26. Kabir, M.M., Analytic solutions for a nonlinear variant of the (2+1)-dimensional Camassa-Holm-KP equation, Austral. J. Basic Appl. Sci., 5 (2011), 12, pp. 1566-1577
  27. Kabir, M.M., Khajeh, A., New explicit solutions for the Vakhnenko and a generalized form of the nonlinear heat conduction equations via Exp-function method, Int. J. Nonlinear Sci. Num. Simul., 10 (2009), 10, pp. 1307-1318
  28. Kabir, M.M., Modified Kudryashov Method for Generalized Forms of the Nonlinear Heat Conduction Equation, Inter. J. Phys. Sci., 6 (2011), 1
  29. Kabir, M.M., Khajeh, A., Abdi Aghdam, E., Yousefi-Koma, A., Modified Kudryashov method for finding exact solitary wave solutions of higher-order nonlinear equations, Math. Methods Appl. Sci., 34 (2011), pp. 213-219
  30. Borhanifar, A., Kabir, M.M., New periodic and soliton solutions by application of Exp-function method for nonlinear evolution equations, J. Comput. Appl. Math., 229 (2009), pp. 158-167
  31. Borhanifar, A., Kabir, M.M., Vahdat Lasemi, M., New periodic and soliton wave solutions for the generalized Zakharov system and (2 + 1)-dimensional Nizhnik-Novikov-Veselov system, Chaos, Solitons & Fractals, 42 (2009), pp. 1646-1654
  32. Borhanifar, A., Kabir, M.M., Soliton and Periodic solutions for (3+1)-dimensional nonlinear evolution equations by Exp-function method, Appl. Appl. Math. Inter. J. (AAM), 5 (2010), 1, pp. 59-69
  33. Wang, M., Li, X., Zhang, J., The (G'/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008), pp. 417-423
  34. Zedan, H.A., New classes of solutions for a system of partial differential equations
  35. Kabir, M.M., Borhanifar, A., Abazari, R., Application of (G'/G)-expansion method to Regularized Long Wave (RLW) equation, Comput. Math. Appl., 61 (2011), 8, pp. 2044-2047
  36. Kabir, M.M., Bagherzadeh, R., Application of (G'/G)-Expansion Method to Nonlinear Variants of the (2+1)-Dimensional Camassa-Holm-KP Equation, Mid. East J. Sci. Research, 9 (2011), 5, pp. 602-610
  37. Liao, S.J., Beyond perturbation: introduction to homotopy analysis method, Boca Raton: Chapman & Hall/CRC Press, 2003
  38. Liao, S.J., A new branch of solutions of boundary layer flows over an impermeable stretching plate, Int. J. Heat Mass Transf., 48 (2005), pp. 2529-2539
  39. Liao, S.J., A short review on the homotopy analysis method in fluid mechanics, J. Hydrodynamics, 22 (2010), pp. 882-884
  40. Abbasbandy, S., Hayat, T., On series solution for unsteady boundary layer equations in a special third grade fluid, Commun. Nonlinear. Sci. Numer. Simulat., 16 (2011), pp. 3140-3146
  41. Abbasbandy, S., Homotopy analysis method for the Kawahara equation, Nonlinear Anal.: Real World Appl., 11 (2010), pp. 307-312
  42. Hayat, T., Noreen, S., Sajid, M., Heat transfer analysis of the st eady flow of a fourth grade fluid, Int. J. Thermal Sci., 47 (2008), pp. 591-599
  43. Mustafa, M., Hina, S., Hayat, T., Alsaedi, A., Influence of wall properties on the peristaltic flow of nanofluid: Analytic and numerical solutions, Int. J. Heat Mass Transfer, 55 (2012), pp. 4871-4877
  44. Mustafa, M., Hayat, T., Obaidat, S., Stagnation-point flow of a nanofluid towards a stretching sheet, Int. J. Heat Mass Transfer, 54 (2011), pp. 5588-5594
  45. Mustafa, M., Hayat, T., Alsaedi, A., Axisymmetric flow of a nanofluid over a radially stretching sheet with convective boundary conditions, Current Nanoscience, 8 (2012), pp. 328-334