STEADY STATE ANALYSIS OF REGULAR HOLLOW PYRAMIDAL RADIATING FIN WITH TRIANGULAR CROSS-SECTION

Abstract

A new configuration for space radiator is proposed introducing a fin of regular hollow pyramidal shape with triangular cross section, giving a higher improvement in heat loss per unit mass than that of other corresponding configurations previously proposed under same working conditions. The significance of the present configuration and its advantage over other regular hollow configurations are discussed and effect of various design parameters on heat transfer is analyzed in presence of radiation interaction with an isothermal base attached to it. Optimum parameters are identified for which improvement in heat loss per unit mass is the maximum. It is found that the fin efficiency decreases with increase in the emissivity & height of the fin and increases with increase in thickness & top radius of the fin. Correlations are presented for optimum design parameters, optimum improvement in heat loss per unit mass and fin efficiency.

Dates

  • Submission Date2012-06-17
  • Revision Date2013-06-17
  • Acceptance Date2013-07-15
  • Online Date2014-04-05

DOI Reference

10.2298/TSCI120617029V

References

  1. Karlekar, B. V., Chao, B. T., Mass Minimization Of Radiating Trapezoidal Fins With Negligible Base Cylinder Interaction, International journal of Heat and Mass Transfer, 6 (1963), 1,pp. 33-48.
  2. Schnurr, N. M., et al. Optimization Of Radiating Fin Arrays With Respect To Weight, ASME, Transactions, Series C - Journal of Heat Transfer, 98 (1976), 4, pp. 643-648.
  3. Karam, R. D., Eby, R. J., Linearized Solution Of Conducting-Radiating Fins, AIAA Journal (Fluid Mechanics and Heat Transfer), 16 (1978), 5, pp. 536-538.
  4. Chung, B. T. F., Zhang B. X., Optimization Of Radiating Fin Array Including Mutual Irradiations Between Radiator Elements, Journal of Heat Transfer, 113 (1991), 4, pp. 814-822.
  5. Kumar, S., Venkateshan, S. P., Optimized Tubular Radiator With Annular Fins On a Non-Isothermal Base, International journal of Heat and Fluid Flow,15 (1994), 5, pp. 399-409.
  6. Krishnaprakas C. K., Optimum Design Of Radiating Rectangular Plate Fin Array Extending From a Plane Wall, Journal of Heat Transfer, 118 (1996),2, pp. 490-493.
  7. Krishnaprakas C. K., Optimum Design of Radiating Longitudinal Fin Array Extending From a Cylindrical Surface, Journal Heat Transfer, 119 (1997),4, pp. 857-861.
  8. Deiveegan M., Subrahmanya S. Katte., One Dimensional Analysis of Hollow Conical Radiating Fin, Journal of Thermo Physics and Heat Transfer, 18 (2004),2, pp. 277-279.
  9. Mohammad Hadi Kamrava., Farzad Bazdidi-Tehrani., Computational Calculation of Thermal Efficiency in a Space Radiating Fin for Two Different Materials Trans tech ,Applied Mechanics and Materials, 110 (2011) pp. 23-28. DOI No. (10.4028/www.scientific.net/AMM.110-116.23).
  10. ***, ANSYS Software and program documentation, www.ansys.com.
  11. Cohen, M. E., and Greenberg, D. P., The Hemi-Cube: A Radiosity Solution for Complex Environments, Computer Graphics, 19 (1985), 3, pp. 31-40.
Volume 19, Issue 1, Pages59 -68