Lattice Boltzmann simulation of turbulent natural convection in tall enclosures

Abstract

In this paper Lattice Boltzmann simulation of turbulent natural convection with large-eddy simulations (LES) in tall enclosures which is filled by air with Pr=0.71 has been studied. Calculations were performed for high Rayleigh numbers (Ra=107-109) and aspect ratios change between 0.5 to 2 (0.57 . Effects of the aspect ratios in different Rayleigh numbers are displayed on streamlines, isotherm counters, vertical velocity and temperature at the middle of the cavity, local Nusselt number and average Nusselt number. The average Nusselt number increases with the augmentation of Rayleigh numbers. The increment of the aspect ratio causes heat transfer to decline in different Rayleigh numbers.

Dates

  • Submission Date2012-01-05
  • Revision Date2012-01-28
  • Acceptance Date2013-06-05
  • Online Date2013-06-16

DOI Reference

10.2298/TSCI120105066S

References

  1. U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press, New York, 1995.
  2. G. Barakos, E. Mitsoulis, D. Assimacopoulos, "Natural convection flow in a square cavity revisited: laminar and turbulent models with wall function", Int. J. Numerical Method in Fluids, (1994), 18, pp.695-719.
  3. F. Ampofo, T.G. Karayiannis, "Experimental benchmark data for turbulent natural convection in an air filled square cavity", Int. J. Heat and Mass Transfer, (2003), 46, pp. 3551-3572.
  4. J. Smagorinsky, "General Circulation Experiments with the Primitive Equations", Mon. Wea. Rev, (1963), 91, pp. 99-164.
  5. D. Lilly, "On the Application of the Eddy Viscosity Concept in the Inertial Sub-range of Turbulence", National Center for Atmospheric Research, Boulder, CO, 1966, pp. 123.
  6. J. Deardorff, "A numerical study of three-dimensional channel flow at large reynolds numbers", J. Fluid Mech., (1970), 41, pp. 453.
  7. U. Schumann, "Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli", J. Comput. Phys., (1975), 18, pp. 376.
  8. A. Leonard, "Energy cascade in large-Eddy simulations of turbulent fluids flows, Adv. Geo. Phys., (1974), 18A, pp. 237.
  9. S. Succi, "the Lattice Boltzmann Equation for Fluid Dynamics and Beyond". Clarendon Press, Oxford, 2001.
  10. H. Sajjadi, M. Gorji, GH. R. Kefayati, D. D. Ganji, "Lattice Boltzmann simulation of MHD mixed convection in two sided lid-driven square cavity", Heat Transfer-Asian Research (2012) 41, pp. 179-195.
  11. A.A. Mohamad , A. Kuzmin, "A critical evaluation of force term in lattice Boltzmann method, natural convection problem", Int. J. Heat and Mass Transfer, (2010), 53, pp. 990-996.
  12. H. Sajjadi, M. Gorji, GH.R. Kefayati, D.D.Ganji, Lattice Boltzmann simulation of turbulent natural convection in tall enclosures using Cu/water nanofluid, Num. Heat Transfer Part A, (2012) 62, pp. 512-530.
  13. H. Sajjadi, M. Gorji, GH.R. Kefayati, D. D. Ganji; Lattice Boltzmann simulation of natural convection in an inclined heated cavity partially using Cu/water nanofluid, Int. J. Fluid Mech. Res. (2012), 39, pp.348-372.
  14. GH.R. Kefayati, S.F. Hosseinizadeh , M. Gorji, H. Sajjadi, "Lattice Boltzmann simulation of natural convection in tall enclosures using water/ SiO2 nanofluid", Int. Comm. Heat and Mass Transfer, (2011), 38, pp. 798-805.
  15. GH.R. Kefayati, S.F. Hosseinizadeh , M. Gorji, H. Sajjadi, "Lattice Boltzmann simulation of natural convection in an open enclosure subjugated to Water/copper nanofluid", Int. J. Therm. Sci. (2012), 52, pp. 91-101 .
  16. H.N. Dixit, V. Babu, "Simulation of high Rayleigh number natural convection in a square cavity using the Lattice Boltzmann method", Int. J. Heat and Mass Transfer, (2006) , 46, pp. 727-739.
  17. A. Horvat, I. Kljenak, J. Marn, "Two-dimensional large-eddy simulation of turbulent natural convection due to internal heat generation", Int. J. Heat and Mass transfer, (2001), 44, pp. 3985-3995.
  18. S. Hou, J. Sterling, S. Chen, G.D. Doolen, "A Lattice Boltzmann subgrid model for high Reynolds number flows", Fields Inst. Comm. (1996), 6, pp. 151-166.
  19. C.M. Teixeira,"Incorporation turbulence models into the Lattice-Boltzmann method", Int. J. Mod. Phys. C, (1998), 9, pp. 1159-1175.
  20. M. Krafczyk, J. Tolke, L.S. Luo, "Large-eddy simulations with a multiple-relaxation-time LBE model", Int. J. Mod. Phys. B, (2003), 17, pp. 33-39.
  21. H. Yu, L.S. Luo, S. S. Girimaji, "LES of turbulent square jet flow using an MRT lattice Boltzmann model", Comp. & Flu. (2006), 35, pp. 957-965.
  22. M. Fernandino, K. Beronov, T. Ytrehus, "Large eddy simulation of turbulent open duct flow using a lattice Boltzmann approach", Math. Comp. in Simulation, (2009), 79, pp. 1520-1526.
  23. S. Chen, "A large-eddy-based lattice Boltzmann model for turbulent flow simulation", App. Math. Comp., (2009), 215, pp. 591-598.
  24. W.A. Kareem, S. Izawa, A.K. Xiong, Y. Fukunishi, "Lattice Boltzmann simulations of homogeneous isotropic turbulence", Comp. Math. with Appl. (2009), 58, pp. 1055_1061.
  25. H. Sajjadi, M. Gorji, S.F. Hosseinizadeh, GH. R. Kefayati, D. D. Ganji, "Numerical analysis of turbulent natural convection in square cavity using Large-Eddy Simulation in Lattice Boltzmann Method", IR. J. Sci. & Tech. Tran. B/Eng., (2011), 35, pp.133-142.
Volume 19, Issue 1, Pages155 -166