VARIATIONAL ITERATION METHOD FOR THE CLASSICAL DRINFEL'D-SOKOLOV-WILSON EQUATION
Abstract
In this paper, we apply the variational iteration method to solve the classical
Drinfel'd-Sokolov-Wilson equation. The initial value problem of the classical
Drinfel'd-Sokolov-Wilson equation is considered. Numerical experiments are
presented to show the efficiency of the method.
Dates
- Submission Date2013-09-26
- Revision Date2014-05-05
- Acceptance Date2014-07-12
- Online Date2015-01-04
References
- Drinfel'd, V. G., Sokolov, V. V., Equations of Korteweg-de Vries Type and Simple Lie Algebras (in Russian), Soviet Mathematics Doklady, 23 (1981), pp. 457-462
- Wilson, G., The Affine Lie Algebra C(1)2 and an Equation of Hirota and Satsuma, Physics Letters A, 89 (1982), 7, pp. 332-334
- Hirota, R., et al., Soliton Structure of the Drinfel'd-Sokolov-Wilson Equation, Journal of Mathematical Physics, 27 (1986), 6, pp. 1499-1505
- Drinfel'd, V. G., Sokolov, V. V., Lie Algebras and Equations of Korteweg-de Vries Type, Journal of Soviet Mathematics, 30 (1985), 2, pp. 1975-2036
- Adomian, G., A Review of the Decomposition Method in Applied Mathematics, Journal of Mathematical Analysis and Applications, 135 (1988), 2, pp. 501-544
- Inc, M., On Numerical Doubly Periodic Wave Solutions of the Coupled Drinfel'd-Sokolov-Wilson Equation by the Decomposition Method, Applied Mathematics and Computation, 172 (2006), 1, pp. 421-430
- He, J.-H., Wu, X.-H., Exp-Function Method for Non-linear Wave Equations, Chaos, Solitons & Fractals, 30 (2006), 3, pp. 700-708
- Misirli, E., Gurefe, Y., Exact Solutions of the Drinfel'd-Sokolov-Wilson Equation Using the Exp-Function Method, Applied Mathematics and Computation, 216 (2010), 9, pp. 2623-2627
- Zhao, X. Q., Zhi, H. Y., An Improved F-Expansion Method and Its Application to Coupled Drinfel'd- Sokolov-Wilson Equation, Communications in Theoretical Physics, 50 (2008), 2, pp. 309-314
- Wen, Z. S., et al., New Exact Solutions for the Classical Drinfel'd-Sokolov-Wilson Equation, Applied Mathematics and Computation, 215 (2009), 6, pp. 2349-2358
- He, J.-H., Variational Iteration Method for Delay Differential Equations, Communications in Nonlinear Science and Numerical Simulation, 2 (1997), 4, pp. 235-236
- He, J.-H., Variational Iteration Method - a Kind of Non-Linear Analytical Technique: Some Examples, International Journal of Non-Linear Mechanics, 34 (1999), 4, pp. 699-708
- He, J.-H., Approximate Solution of Non-linear Differential Equations with Convolution Product Nonlinearities, Computer Methods in Applied Mechanics and Engineering, 167 (1998), 1-2, pp. 69-73
- He, J.-H., Wu, X. H., Construction of Solitary Solution and Compacton-like Solution by Variational Iteration Method, Chaos, Solitons & Fractals, 29 (2006), 1, pp. 108-113
Volume
18,
Issue
5,
Pages1543 -1546