THERMAL PROTECTION OF ELECTRONIC DEVICES WITH THE NYLON6/66-PEG NANOFIBER MEMBRANES
Abstract
Phase change materials for thermal energy storage have been widely applied to clothing insulation, electronic products of heat energy storage. The thermal storage potential of the nanofiber membranes was analyzed using the differential scanning calorimetry. Effect of microstructure of the membrane on energy storage was analyzed, and its applications to electronic devices were elucidated.
Dates
- Submission Date2014-03-30
- Revision Date2014-05-03
- Acceptance Date2014-07-12
- Online Date2015-01-04
References
- Darabi, J., Ekula, K., Development of a Chip-Integrated Micro Cooling Device, Microelectronics Journal, 34 (2003), 11, pp. 1067-1074
- Farid, M. M., et al., A Review on Phase Change Energy Storage: Materials and Applications, Energy Conversion and Management, 45 (2004), 9, pp. 1597-1615
- Mesalhy, O., et al., Carbon Foam Matrices Saturated with PCM for Thermal Protection Purposes, Carbon, 44 (2006), 10, pp. 2080-2088
- Garg, H. P., et al., Solar Thermal Energy Storage, Reidel Publishing Company, Dordrecht, The Netherlands, 1985
- Kaygusuz, K., The Viability of Thermal Energy Storage, Energy Sources, 21 (1999), 8, pp. 745-756
- Sari, A., Kaygusuz, K., Thermal Performance of Palmitic Acid as a Phase Change Energy Storage Material, Energy Conversion Manage, 43 (2002), 6, pp. 863-876
- Sari, A., Thermal Reliability Test of Some Fatty Acids as PCMs Used for Solar Thermal Latent Heat Storage Applications, Energy Conversion and Management, 44 (2003), 14, pp. 2277-2287
- He, J.-H., et al., Nanoeffects, Quantum-Like Properties in Electrospun Nanofibers, Chaos, Solitons & Fractals, 33 (2007), 1, pp. 26-37
- Baumgarten, P. K., Electrostatic Spinning of Acrylic Microfibers, Journal of Colloid and Interface Science, 36 (1971), 1, pp. 71-79
- Bergshoef, M. M., Vancso, G. J., Transparent Nanocomposites with Ultrathin, Electrospun Nylon-4, 6 Fiber Reinforcement, Advanced Materials, 11 (1999), 16, pp. 1362-1365
- Li, D., Xia, Y., Electrospinning of Nanofibers: Reinventing the Wheel, Advanced Materials, 16 (2004), 14, pp. 1151-1170
- Sun, Z., et al., Compound Core-Shell Polymer Nanofibers by Co-Electrospinning, Advanced Materials, 15 (2003), 22, pp. 1929-1932
- Koombhongse, S., et al., Flat Polymer Ribbons and other Shapes by Electrospinning, Journal of Polymer Science, Part B: Polymer Physics, 39 (2001), 21, pp. 2598-2606
- Zussman, E., et al., Tensile Deformation of Electrospun Nylonâ6,6 Nanofibers, Journal of Polymer Science, Part B: Polymer Physics, 44 (2006), 10, pp. 1482-1489
- Liu, Y., et al., Crystalline Morphology and Polymorphic Phase Transitions in Electrospun Nylon6 Nanofibers, Macromolecules, 40 (2007), 17, pp. 6283-6290
- Cai, Y., et al., Effects of NanoSiO2 on Morphology, Thermal Energy Storage, Thermal Stability, and Combustion Properties of Electrospun Lauric Acid/PET Ultrafine Composite Fibers as Form-Stable Phase Change Materials, Applied Energy, 88 (2011), 6, pp. 2106-2112
- Chen, C., et al., Electrospinning of Thermo-Regulating Ultrafine Fibers Based on Polyethylene Glycol/Cellulose Acetate Composite, Polymer, 48 (2007), 18, pp. 5202-5207
Volume
18,
Issue
5,
Pages1141 -1446