FORCED CONVECTION BOUNDARY LAYER MHD FLOW OF NANOFLUID OVER A PERMEABLE STRETCHING PLATE WITH VISCOUS DISSIPATION

Abstract

Forced convection boundary layer magneto-hydrodynamic (MHD) flow of a nanofluid over a permeable stretching plate is studied in this paper. The effects of suction-injection and viscous dissi1pation are taken into account. The nanofluid model includes Brownian motion and thermophoresis effects. The governing momentum, energy and nanofluid solid volume fraction equations are solved numerically using an implicit finite difference scheme known as Keller-box method and the results are compared with available numerical data. The results for the dimensionless velocity, dimensionless temperature, dimensionless nanofluid solid volume fraction, reduced Nusselt and reduced Sherwood numbers are presented illustrating the effects of magnetic parameter, suction-injection parameter, Brownian motion parameter, thermophoresis parameter, Prandtl number, Eckert number and Lewis number.

Dates

  • Submission Date2012-04-03
  • Revision Date2013-02-05
  • Acceptance Date2013-05-05
  • Online Date2013-06-01

DOI Reference

10.2298/TSCI120403049H

References

  1. Fisher E. G., Extrusion of Plastics, Wiley, New York, 1976.
  2. Altan, T., Gegel, S. O. H., Metal Forming Fundamentals and Applications, American Society of Metals, Metals Park, OH, 1979.
  3. Tadmor, Z., Klein, I., Engineering Principles of Plasticating Extrusion, Polymer Science and Engineering Series, Van Nostrand Reinhold, New York, 1970.
  4. Choi, S. U. S., Enhancing thermal conductivity of fluids with nanoparticles, Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD 66, 1995, pp. 99-105.
  5. Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., Grulke, E. A., Anomalously thermal conductivity enhancement in nanotube suspensions, Applied Physics Letters, 79 (2001), pp. 2252-2254 .
  6. Buongiorno, J., Convective transport in nanofluids, ASME Journal of Heat Transfer, 128 (2006), pp. 240-250.
  7. Bachok, N., Ishak, A., Pop, I., Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. International Journal of Thermal Sciences, 49 (2010), pp. 1663-1668.
  8. Khan, W. A., Pop, I., Boundary-layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, 53 (2010), pp. 2477-2483.
  9. Hamad, M. A. A., Pop, I., Ismail, A. I. Md., Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate. Nonlinear Analysis: Real World Applications. 12 (2011) 1338-1346.
  10. Van Gorder, R. A., Sweet, E., Vajravelu, K., Nano boundary layers over stretching surfaces. Communication in Nonlinear Science and Numerical Simulation, 15 (2010), pp. 1494-1500.
  11. Hamad, M. A. A., Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field. International Communications in Heat and Mass Transfer, 38 (2011), pp. 487-492.
  12. Khan, W. A., Aziz, A., Natural convection flow of a nanofluid over a vertical plate with uniform surface heat flux. International Journal of Thermal Sciences, 50 (2011), pp. 1207-1214.
  13. Makinde, O. D., Aziz A., Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. International Journal of Thermal Sciences, 50 (2011), pp. 1326-1332.
  14. Hassani, M., Tabar, M. M., Nemati, H., Domairry, G., Noori, F., An analytical solution for boundary layer flow of a nanofluid past a stretching sheet. International Journal of Thermal Sciences. doi:10.1016/j.ijthermalsci.2011.05.015, 2011.
  15. Rana, P., Bhargava, R., Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A numerical study. Communication in Nonlinear Science and Numerical Simulation, 17 (2012), pp. 212-226.
  16. Kuznetsov, A. V., Nield, D. A., Natural convective boundary-layer flow of a nanofluid past a vertical plate, International Journal of Thermal Sciences, 49 (2010), pp. 243-247.
  17. Nield, D. A., Kuznetsov, A. V., Double-diffusive natural convective boundary-layer flow of a nanofluid past a vertical plate, International Journal of Thermal Sciences, 50 (2011), pp. 712- 717.
  18. Khan, W. A., Aziz, A., Double-diffusive natural convective boundary layer flow in a porous medium saturated with a nanofluid over a vertical plate: Prescribed surface heat,solute and nanoparticle fluxes, International Journal of Thermal Sciences, 50 (2011), pp. 2154- 2160.
  19. Nield, D. A., Kuznetsov, A. V., Thermal instability in a porous medium layer saturated by a nanofluid, International Journal of Heat and Mass Transfer, 52 (2009), pp. 5796-5801.
  20. Nield, D. A., Kuznetsov, A. V., The Cheng-Minkowycz problem for the double-diffusive natural convective boundary layer flow in a porous medium saturated by a nanofluid, International Journal of Heat and Mass Transfer, 54 (2011), pp. 374-378.
  21. Nield, D. A., Kuznetsov, A. V., The onset of convection in a horizontal nanofluid layer of finite depth, European Journal of Mechanics - B/Fluids, 29 (2010), pp. 217-223.
  22. Cebeci, T., Bradshaw, P., Momentum Transfer in Boundary Layers, Hemisphere Publishing Corporation, New York, 1977.
  23. Cebeci, T., Bradshaw, P., Physical and Computational Aspects of Convective Heat Transfer, Springer-Verlag, New York, 1984.
  24. Salleh, M. Z., Nazar, R., Ahmad, S., Numerical Solutions of the Forced Boundary Layer Flow at a Forward Stagnation Point, European Journal of Scientific Research, 19 (2008), pp. 644 - 653.
  25. Wang, C. Y., Free convection on a vertical stretching surface, Journal of Applied Mathematics and Mechanics (ZAMM), 69 (1989), pp. 418-420.
  26. Pantokratoras, A., A common error made in investigation of boundary layer flows, Applied Mathematical Modelling, 33 (2009), pp. 413-422.
Volume 18, Issue 12, Pages587 -598