CUTTING TEMPERATURE MEASUREMENT AND MATERIAL MACHINABILITY

Abstract

Cutting temperature is very important parameter of cutting process. Around 90% of heat generated during cutting process is then away by sawdust, and the rest is transferred to the tool and workpiece. In this research cutting temperature was measured with artificial thermocouples and question of investigation of metal machinability from aspect of cutting temperature was analyzed. For investigation of material machinability during turning artificial thermocouple was placed just below the cutting top of insert, and for drilling thermocouples were placed through screw holes on the face surface. In this way was obtained simple, reliable, economic and accurate method for investigation of cutting machinability.

Dates

  • Submission Date2012-07-19
  • Revision Date2012-11-14
  • Acceptance Date2012-12-05
  • Online Date2013-01-20

DOI Reference

10.2298/TSCI120719003N

References

  1. Milikić, D. (1980) Nova metoda za merenje temperatura pri obradi rezanjem i mogućnosti njene tehnološke i senzorske primene. Novi Sad: Fakultet tehničkih nauka / FTN, Doktorska disertacija
  2. Gostimirović M., Kovač M., Milikić D., "Temperaturska metoda za određivanje funkcije postojanosti reznog alata pri struganju i glodanju, MMA'90, Novi Sad, 1990
  3. Nedić, B., Upravljanje procesom obrade otvora bušenjem, Magistarsi rad, Mašinski fakultet, Kragujevac, 1991.
  4. Erić, M., Nedić, B., Materials Machinability in Relation to the Cutting Temperature, Tribology in Industry, Vol. 24, No 3&4, 2002., pp. 79-82.
  5. F. Z. Fang, L.C. Lee, X.D. Liu, Mean Flank Temperature Measurement in High Speed Dry Cutting of Magnesium Alloy, Journal of Materials Processing Technology, Volume 167, Issue 1, 25 August 2005, Pages 119-123.
  6. L.C. Brandao, R.T. Coelho, A.T. Malavolta, Experimental and Theoretical Study on Workpiece Temperature when Tapping Hardened AISI H13 Using Different Cooling Systems, Journal of Brazilian Society Mechanical Science & Engineering, Vol. XXXII, No. 2, April-June 2010, pp. 154-159.
  7. D. Tanikić, M. Manić, G. Radenković, D. Mančić, Metal cutting process parameters modeling: an artificial intelligence approach, Journal of Scientific & Industrial Research, Vol. 68, June 2009. pp. 530-539
  8. J. Liu, Y. Kevin Chou, On temperatures and tool wear in machining hypereutectic Al-Si alloys with vortex-tube cooling, International Journal of Machine Tools & Manufacture 47 (2007) 635-645
  9. Theo Ian van Nieker, Monitoring and Diagnosis for Control of an Intelligent machining Process, Ph.D Thesis, Faculty of Electrical and Mechanical Engineering, Port Elizabeth Technikon, George, South Africa, 2001.
  10. D. Tanikić, M. Manić, G. Devedžić, Modeliranje temperature strugotine korišćenjem metoda veštačke inteligencije, Tehnička dijagnostika, 2008, vol. 7, br. 4, str. 3-11
  11. Y. Dogu, E. Aslan, N. Camuscu, A numerical model to determine temperature distribution in orthogonal metal cutting, Journal of Materials Processing Technology 171 (2006), 1-9
  12. S. R. Carvalho, S.M.M. Lima e Silva, A.R. Machado, G. Guimaraes, Temperature determination at the chip-tool interface using an inverse thermal model considering the tool and tool holder, Journal of Materials Processing Technology 179 (2006) 97-104
  13. J. Kodacsy, V. Molnar, Investigation of cutting temperatures' relation to the tool wear, Annals of Faculty Engineering Hunedoara - International Journal of Engineering, Tome IX (Year 2011), Fascicule 2. pp. 169-172
  14. B. Shen, G. Xiao, C. Malkin, A. J. Shih, Thermocouple Fixation Method for Grinding Temperature Measurement, Journal of Manufacturing Science and Engineering, Vol. 130, pp. 051014/1-8, 2008.
  15. U. Seker, I. Korkut, Y. Turgut, M. Boy, The measurement of temperature during machining, 4th International Conference of Power Transmissions'03, Varna, Bulgaria, pp. 1-4, 2003.
  16. K. Kadirgama, M. M. Rahman, B. Mohamed, R. A. A. R. Ismail Bakarand, Development of temperature statistical model when machining of aerospace alloy materials, Thermal Science 2012 OnLine-First Issue 00, Pages: 112-112.
  17. S. Kosaraju, V. G. Anne, B. B. Popuri, Taguchi Analysis on Cutting Forces and Temperature in Turning Titanium Ti-6Al-4V, International Journal of Mechanical and Industrial Engineering (IJMIE), Vol‐1, Issue‐4, pp. 55-59, 2012
  18. S. Kalidas, R. E. DeVor, S. G. Kapoor, Experimental investigation of the effect of drill coatings on hole quality under dry and wet drilling conditions, Surface and Coatings Technology 148, pp.117-128. 2001
  19. M. A. Davies, T. Ueda, R. M'Saoubi, B. Mullany, A. L. Cooke, On The Measurement of Temperature in Material Removal Processes, Annals of the CIRP Vol. 56/2, pp. 581-604, 2007.
  20. M. H. Attia, A. Cameron, L. Kops, Distortion in Thermal Field Around Inserted Thermocouples in Experimental Interfacial Studies, Part 4: End Effect, Journal of Manufacturing Science and Engineering, Vol. 124, pp. 135-145, 2002.
  21. Woodbury, A. Gupta, Effect of deterministic thermocouple errors (bias) on the solution of the inverse heat conduction problem, Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, pp. W03/1-8, 2005.
  22. G. Le Coz, M. Marinescu, A. Devillez, D. Dudzinski, L. Velnom, Measuring temperature of rotating cutting tools: Application to MQL drilling and dry milling of aerospace alloys, Applied Thermal Engineering, Vol 36, pp. 434-441, 2012.
  23. A. Amritkar,C. Prakash, A. P.Kulkarni, Development of temperature measurement setup for machining, World Journal of Science and Technology, Vol 2(4), pp. 15-19, 2012
  24. J. R. Jaeschke, R. D. Zimmerly, S. M. Wu: Automatic cutting tool temperature control, Int. J. Much. Tool Des. Res. Vol. 7, pp. 465-475., 1967.
  25. M. J. Bono, J. Ni, The Location of the Maximum Temperature on the Cutting Edges of a Drill, International Journal of Machine Tools and Manufacture, DOI:10.1016/j.ijmachtools. 2005.04.020, pp. 1-14.
  26. L. B. Abhang, M. Hameedullah, Chip-Tool Interface Temperature Prediction Model for Turning Process, International Journal of Engineering Science and Technology, Vol. 2(4), 2010, pp. 382-393.
  27. G. Sutter, L. Faure, A. Molinari, N. Ranc, V. Pina, An experimental technique for the measurement of temperature fields for the orthogonal cutting in high speed machining, International Journal of Machine Tools & Manufacture 43 (2003) pp. 671-678.
  28. R. Komanduri, Z.B. Hou, A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology, Tribology International 34 (2001) pp. 653-682.
  29. N. Sugita, T. Osa, M. Mitsuishi, Analysis and estimation of cutting-temperature distribution during end milling in relation to orthopedic surgery, Medical Engineering & Physics 31 (2009) pp. 101-107.
  30. L. Chao, A. Xing, Study on Cutting Temperature and Wear Mechanism of Tool in High Speed Turning Superalloy GH2132, International Conference on Computing, Control and Industrial Engineering, DOI 10.1109/CCIE.2010.199, pp. 327- 330, 2010.
  31. R. M'Saoubi, H. Chandrasekaran, Experimental study and modelling of tool temperature distribution in orthogonal cutting of AISI 316L and AISI 3115 steels, Int J Adv Manuf Technol (2011) 56: pp. 865-877.
  32. S. Sharif, E. Abd rahim, H. Sasahara, Machinability of Titanium Alloys in Drilling, Titanium Alloys - Towards Achieving Enhanced Properties for Diversified Applications, A.K.M. Nurul Amin (Ed.), ISBN: 978-953-51-0354-7, InTech, Available from: www.intechopen.com/ books/titanium-alloys-towards-achieving-enhanced-properties-for-diversified-applications/ drilling-of-titanium-alloys, 2012
  33. B. Slodki, G. Struzikiewicz, L. Slusarczyk, Chip forms and their correlation with temperature and cutting forces in inconel 625 and 718 turning, XXV MicroCAD International Scientific Conference Proceedings, pp. 159-164, Miskolc, 2011.
Volume 18, Issue 11, Pages259 -268