A NUMERICAL CREEP ANALYSIS ON THE INTERACTION OF TWIN PARALLEL EDGE CRACKS IN FINITE WIDTH PLATE UNDER TENSION

Abstract

In many practical situations, high-temperature structures and components contain more than one crack. An interaction of such multiple cracks has significant influence on the service life of structures and components. In this paper, the interaction of two identical parallel edge cracks in a finite plate subjected to the remote tension is numerically analyzed. The results show that interaction effect of multiple cracks at creep regime is obviously greater than at linear elastic regime. The intensity of creep crack interaction increases with increasing creep exponent m. The crack intensity and the crack interaction limit at creep regime depend on crack distance ratio d/a, crack width ratio a/W and creep exponent m.

Dates

  • Submission Date2013-02-12
  • Revision Date2013-06-16
  • Acceptance Date2013-06-25
  • Online Date2014-07-06

DOI Reference

10.2298/TSCI130212181K

References

  1. X. Liu, F. Z. Xuan, J. Si, S. T. Tu, Expert system for remaining life prediction of defected compo-nents under fatigue and creep-fatigue loadings, Expert syst. applic., 34, pp. 222-230, 2008.
  2. ASME, Boiler and Pressure Vessel Code Section XI, New York, 2007.
  3. American Petroleum Institute, API 579-1/ASME FFS-1, Fitness-for-service, Section 9, 2007.
  4. Guidance on Methods of Assessing the Acceptability of Flaws in Metallic Structures, Brtish Standard Institutions, London, UK, BS7910, 2005.
  5. Assessment of the Integrity of Structures Containing Defects, British Energy Generation Ltd., Gloucester, Revision 4, R6, 2006.
  6. Safety Assessment for In-Service Pressure Vessels Containing Defects, Chinese Standards, Beijing, GB/T19624, 2004.
  7. S. Damnjanovic, A. Sedmak, H. A. Anyiam, N. Trisovic, Lj. Milovic, C* Integral Evaluation by Using EPRI Procedure Structural Integrity and Life, Vol. 2, No 1-2, 2002, pp. 51-54.
  8. R. Sethurman, G. Reddy, I. T. Ilango, Finite element based evalution of stress intensity factors for interactive semi-elliptic surface cracks, Int. J. Press. Vess. Piping, 80, 2003, 12, pp. 843-5t
  9. M. Manjgo, B. Medjo, Lj. Milovic, M. Rakin, Z. Burzic, A. Sedmak, Analysis of welded tensile plates with a surface notch in the weld metal and heat affected zone, Eng. Fract. Mech., 77, 15, pp. 2958-2970, 2010.
  10. D. Kozak, N. Gubeljak, P. Konjatic, J. Sertic, Yield load solutions of heterogeneous welded joints, Int. J. Press. Vess. Piping, 86, pp. 807-812, 2009.
  11. P. Konjatic, D. Kozak, N. Gubeljak, The Influence of The Weld Width on Fracture Behaviour of The Heterogeneous Welded Joint, Key Engineering Materials, 488-489, pp. 367-370, 2012.
  12. N. Gubeljak, J. Predan, D. Kozak, Leak-Before-Break Analysis of a Pressurizer - Estimation of the Elastic-Plastic Semi-Elliptical Through-Wall Crack Opening Displacement, Structural Integrity and Life, Vol. 12, No. 1, 2012, pp. 31-34
  13. I. Camagic, N. Vasic, Z. Vasic, Z. Burzic, A. Sedmak, Compatibility of fracture mechanics parame-ters and fatigue crack growth parameters in welded joint behaviour evaluation, Technical Gazette, Vol. 20, 2, pp. 205-211, 2013.
  14. Yu. G. Matvienko Development of Models and Criteria of Notch Fracture Mechanics, Structural Integrity and Life, Vol. 11, No. 1, 2011, pp. 3-7
  15. P. Agatonović, Proposal for the improved design of reliable failure assessment diagrams for com-ponents with surface crack, Structural Integrity and Life, Vol. 13, No. 2, 2013, pp. 99-108
  16. A. Carpinteri, R. Brighenti, S. Vantadori, A numerical analysis on the interaction of twin coplanar flaws, Eng. Fract. Mech., 71, 2004, 1-6, pp. 485-499.
  17. W. A. Moussa, R. Bell, C. L. Tan, Interaction of two parallel non-complanar identical surface cracks under tension and bending, Int. J. Press. Vess. Piping, 76, 1999, 3, pp. 135-145
  18. S. Jun, X. Fu-Zhen, T. Shan-Tong, A numerical creep analysis on the interaction of twin semi-elliptical cracks, Int. J. Press. Vess. Piping, 85, 2008, 7, pp. 459-467
  19. X. Fu-Zhen, S. Jun, T. Shan-Tong, Evalution of C* integral for interacting cracks in plates under tension, Eng. Fract. Mech. 76, 2009, 14, pp. 2192-2201
  20. X. Fu-Zhen, S. Jun, T. Shan-Tong, Rules for assessment of interacting cracks under creep conditions, Journal of Press. Vess. Techn., 132, 011405-1-6, 2010.
  21. R. Daud, M. A. Rojan, A. K. Ariffin, S. Abdullah, Elastic crack interaction limit of two interacting edge cracks in finite body, ICADME 2012, Panag, Pulan Pinang, Malesia
  22. R. Daud, A. K. Ariffin, S. Abdullah, Al Emran Ismail, Interacting cracks analysis using finite element method, Applied Fracture Mechanics, 27-28 February 2012, Penang, Malaysia. DOI:20.5772/54358
  23. Z. D. Jiang, A. Zeghloul, G. Bezine, J. Petit, Stress intensity factor of parallel cracks in a finite with sheet, Eng. Fract. Mech. 35, 1990, 6, pp. 1073-1079
  24. ABAQUS User's Manual. Version 6.10 Dassault Systems Simulia Corp., Providence, RI, USA
  25. W. F. Brown Jr., J. E. Srawlwy, Plane strain crack toughness testing of high strength metallic mate-rials, ASTM STP 410 , 1966, 12
  26. C. F. Shih, A. Needleman, Fully plastic crack problems, Part 1: Solutions by a penalty method, Jour-nal of Applied Mechanics, Vol. 51, 1984, 1, pp. 48-56
Volume 18, Issue 11, Pages159 -168