TURBULENCE-COMBUSTION INTERACTION IN DIRECT INJECTION DIESEL ENGINE
Abstract
The experimental measures of chemical species and turbulence
intensity during the closed part of the engine combustion cycle are today
unattainable exactly. This paper deals with numerical investigations of an
experimental direct injection Diesel engine and a commercial turbocharged
heavy duty direct injection one. Simulations are carried out with the kiva3v2
code using the RNG (k-ε) model. A reduced mechanism for n-heptane was
adopted for predicting auto-ignition and combustion processes. From the
calibrated code based on experimental in-cylinder pressures, the study
focuses on the turbulence parameters and combustion species evolution in
the attempt to improve understanding of turbulence-chemistry interaction
during the engine cycle. The turbulent kinetic energy and its dissipation rate
are taken as representative parameters of turbulence. The results indicate
that chemistry reactions of fuel oxidation during the auto-ignition delay
improve the turbulence levels. The peak position of turbulent kinetic energy
coincides systematically with the auto-ignition timing. This position seems to
be governed by the viscous effects generated by the high pressure level
reached at the auto-ignition timing. The hot regime flame decreases rapidly
the turbulence intensity successively by the viscous effects during the fast
premixed combustion and heat transfer during other periods. It is showed
that instable species such as CO are due to deficiency of local mixture
preparation during the strong decrease of turbulence energy. Also, an
attempt to build an innovative relationship between self-ignition and
maximum turbulence level is proposed. This work justifies the suggestion to
determine otherwise the self-ignition timing.
Dates
- Submission Date2012-12-10
- Revision Date2013-05-18
- Acceptance Date2013-06-26
- Online Date2013-07-06
References
- Heywood, J.B., Internal Combustion Engine Fundamentals. Mc Graw-Hill. Inc., New York, USA, 1983.
- Günter P. M., Schwarz C., Stiesch G., Otto F., Simulating Combustion, Simulation of combustion and pollutant formation for engine-development. Springer-Verlag Berlin, Heidelberg, GERMANY, (2006).
- Bencherif, M., Liazid, A. and Tazzerout, M., Pollution duality in turbocharged heavy duty diesel engine. Int. J. Vehicle Design, Vol. 50, 2009, Nos. 1/2/3/4, pp.182-195.
- Jafarmadar, S.,Khalilarya, S., Shafee, S., Barzegar, R., "Modeling the Effect of Spray/Wall Impingement on Combustion Process and Emission of DI Diesel Engine." Thermal Science volume 13, 2009, issue 3, pp 23 - 34.
- Amsden, A.A., O'Rourke, P.J. and Butler, T.D., KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays. Los Alamos, NM: LA-11560-MS, Los Alamos National Laboratory, (1989).
- Amsden, A.A., KIVA-3, A KIVA Program with Block-structured Mesh for Complex Geometries, Technical Report, Los Alamos National Laboratory, LA-12503-MS, (1993).
- Amsden, A.A., KIVA-3V, A Block-structured KIVA Program for Engines with Vertical or Canted Valves, Technical Report, Los Alamos National Laboratory, LA-13313-MS, (1997).
- Amsden, A.A., KIVA-3V, Released 2, Improvements to Kiva-3v, Technical Report, Los Alamos National Laboratory, LA-13608-MS, (1999).
- Golovitchev, V.I., Nordin, N., Jarnicki, R., Chomiak, J., 3-D Diesel Spray Simulations using a New Detailed Chemistry Turbulent Combustion Model. SAE, 2000, paper 00FL-447.
- Jarnicki, R., Teodorczyk, A., Golovitchev, V.I. Chomiak, J., Numerical Simulation of Spray Formation, Ignition and Combustion in a Diesel Engine, Using Complex Chemistry Approach. Journal of KONES. International Combustion Engines, Vol. 7, 2000, No 1-2, pp 247-257.
- Golovitchev, V.I., Atarashiya, K., Tanaka, K., and Yamada, S., Towards Universal EDCBased Combustion Model for Compression Ignited Engine Simulations. JSEA, 2003-0181. SAE, 2003-01-1849.
- Reitz, R.D., Rutland, C.J., Development and testing of diesel engine CFD models. Progress in Energy and Combustion Science, 1995, Vol. 21, pp.173-196.
- Golovitchev, V.I., Nordin, N., Jarnicki, R., Chomiak, J., 3-D Diesel Spray Simulations Using a New Detailed Chemistry Turbulent Combustion Model. SAE, 2000, paper 2000-01-1891.
- Golovitchev, V.I., Revising "Old" good models: Detailed chemistry spray combustion modeling based on eddy dissipation concept. 5th International conference ‘Internal combustion engine', September 23-27, 2001, Capri-Naples, Italy.
- Golovitchev, V.I., Tao, F, Chomiak, J., Numerical Evaluation of Soot Formation Control at Diesel -Like Conditions by Reducing Fuel Injection Timing; SAE, 1999, Paper 1999-01-3552.
Volume
18,
Issue
1,
Pages17 -27