NEW MULTI-SOLITON SOLUTIONS FOR GENERALIZED BURGERS-HUXLEY EQUATION

Abstract

The double exp-function method is used to obtain a two-soliton solution of the generalized Burgers-Huxley equation. The wave has two different velocities and two different frequencies.

Dates

  • Submission Date2013-03-20
  • Revision Date2013-04-03
  • Acceptance Date2013-05-01
  • Online Date2013-12-28

DOI Reference

10.2298/TSCI1305486L

References

  1. Ablowitz, M. J., Clarkson, P. A., Nonlinear Evolution Equation and Inverse Scattering, Cambridge University Press, Cambridge, UK, 1991
  2. Singh, J., Gupta, P. K., et al., Variational Iteration Method to Solve Moving Boundary Problem with Temperature Dependent Physical Properties, Thermal Science, 15, (2011), Suppl. 2, pp. S229-S239
  3. He, J.-H., Homotopy Perturbation Method for Bifurcation of Nonlinear Problems, Int. J. Non-linear Sci. Num. Sim, 6 (2005), 2, pp. 207-208
  4. He, J.-H., Application of Homotopy Perturbation Method to Nonlinear Wave Equations, Chaos, Solitons & Fractals, 26 (2005), 3, pp. 695-700
  5. He, J.-H., Homotopy Perturbation Method for Bifurcation of Nonlinear Problems. International Journal of Nonlinear Sciences and Numerical Simulation, 6 (2005), 2, pp. 207-208
  6. He, J.-H., Wu, X.-H., Exp-Function Method of Nonlinear Wave Equations, Chaos, Solitons & Fractals, 30 (2006), 3, pp. 700-708
  7. He, J.-H., Abdou, M. A., New Periodic Solutions for Nonlinear Evolution Equations Using Exp- Function Method, Chaos, Solitions & Fractals, 34 (2006), pp. 1421-1429
  8. He, J.-H., Some Asymptotic Methods for Strongly Nonlinear Equations, Int. J. Mod. Phys. B, 20 (2006), 5, pp. 1141-1199
  9. He, J.-H., Asymptotic Methods for Solitary Solutions and Compactons, Abstract and Applied Analysis 2012, (2012), ID 916793
  10. He, J.-H., An Elementary Introduction to Recently Developed Asymptotic Methods and Nanomechanics in Textile Engineering, International Journal of Modern Physics B, 22 (2008), 21, pp. 3487-3578
  11. Dai, Z. D., et al., New Two-Soliton and Periodic Solutions to KdV Equation, Int. J. Nonlin. Sci. Num., 11 (2010), 4, pp. 237-244
Volume 17, Issue 5, Pages1486 -1489