THE YANG-FOURIER TRANSFORMS TO HEAT-CONDUCTION IN A SEMI-INFINITE FRACTAL BAR
Abstract
1-D fractal heat-conduction problem in a fractal semi-infinite bar has been developed by local fractional calculus employing the analytical Yang-Fourier transforms method. The simplicity and the accuracy of the method are discussed.
Dates
- Submission Date2012-08-26
- Revision Date2013-05-30
- Acceptance Date2013-05-30
- Online Date2013-06-16
References
- Kilbas, A.A., Srivastava, H.M., Trujillo,J.J. Theory and Applications of Fractional Differential Equations, (Elsevier Science, Amsterdam, 2006).
- Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity, (Imperial College Press, London, 2010).
- Podlubny, I., Fractional Differential Equations, (Academic Press, New York, 1999).
- Klafter, J., Lim, S.C., Metzler,R., Eds., Fractional Dynamics in Physics: Recent Advances, (World Scientific, Singapore, 2012).
- Zaslavsky, G.M., Hamiltonian Chaos and Fractional Dynamics (Oxford University Press, Oxford, 2005).
- West, B., Bologna,M., Grigolini, P., Physics of Fractal Operators (Springer, New York, 2003)
- Carpinteri,A., Mainardi, F., (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, (Springer, Wien, 1997).
- Baleanu, D., Diethelm, K., Scalas, E., Trujillo,J.J., Fractional Calculus Models and Numerical Methods, Complexity, Nonlinearity and Chaos, (World Scientific, Singapore, 2012).
- Hristov, J., Heat-Balance Integral to Fractional (Half-Time) Heat Diffusion Sub-Model, Thermal Science, 14 (2010), 2, pp. 291-316.
- Hristov, J., Integral-balance solution to the Stokes' first problem of a viscoelastic generalized second grade fluid, Thermal Science, 16 (2012), 2, pp.395-410.
- Hristov, J., Transient flow of a generalized second grade fluid due to a constant surface shear stress: an approximate integral-balance solution, Int. Rev. Chem. Eng., 3 (2011),6, pp.802-809.
- Jafari, H., Tajadodi,H., Baleanu, D., A modified variational iteration method for solving fractional Riccati differential equation by Adomian polynomials. Fractional Calculus and Applied Analysis, 16 (2013), 1, pp.109-122.
- Wu, G.C., Baleanu,D., Variational iteration method for fractional calculus-a universal approach by Laplace transform, Advances in Difference Equations, 2013 (2013),1, pp. 1-9.
- Ateş, I., Yildirim, A., Application of variational iteration method to fractional initial-value problems, Int. J. Nonl.Sci. Num.Sim., 10 (2009),7, pp.877-884.
- Duan,J.S., Chaolu, T., Rach R., Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the Rach-Adomian-Meyers modified decomposition method, Appl. Math.Comput., 218 (2012),17, pp.8370-8392.
- Momani, S., Yıldırım, A., Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by He's homotopy perturbation method, Int. J Comp. Math. 87 (2010), 5,pp. 1057-1065.
- Guo, S., Mei, L., Li, Y., Fractional variational homotopy perturbation iteration method and its application to a fractional diffusion equation, Appl. Math.Comput., 219 (2013), 11, pp.5909-5917.
- Sun, H. G., Chen, W., Sze, K. Y., A semi-discrete finite element method for a class of time-fractional diffusion equations, Phil. Trans. Royal Soc. A: 371 (2013) 1990, pp.1471-2962.
- Jafari, H., Tajadodi,H., Kadkhoda, N., Baleanu, D., Fractional subequation method for Cahn-Hilliard and Klein-Gordon equations, Abstract and Applied Analysis, 2013, Article ID 587179.
- Luchko,Y., Kiryakova, V., The Mellin integral transform in fractional calculus, Fractional Calculus and Applied Analysis, 16 (2013),2, pp.405-430.
- Abbasbandy,S., Hashemi, M.S., On convergence of homotopy analysis method and its application to fractional integro-differential equations, Quaestiones Mathematicae, 36 (2013),1, pp.93-105.
- Hashim,I., Abdulaziz,O., Momani,S., Homotopy analysis method for fractional IVPs, Comm. Nonl. Sci. Num.Sim., 14 (2009), 3, pp.674-684.
- Li,C., Zeng, F., The finite difference methods for fractional ordinary differential equations. Num.Func.Anal. Optim., 34 (2013), 2, pp.149-179.
- Demir, A., Erman, S., Özgür, B, Korkmaz, E., Analysis of fractional partial differential equations by Taylor series expansion, Boundary Value Problems, 2013 (2013), 1, pp.68-80.
- Kolwankar, K.M., Gangal, A.D., Local fractional Fokker-Planck equation, Physical Review Letters, 80 (1998), 2, pp.214-217.
- Chen, W., Time-space fabric underlying anomalous diffusion, Chaos Solitons Fractals, 28 (2006), 4, pp.923-929.
- Fan, J., He,J.H., Fractal derivative model for air permeability in hierarchic porous media, Abstract and Applied Analysis, vol.2012, Article ID 354701.
- Jumarie, G., Probability calculus of fractional order and fractional Taylor's series application to Fokker-Planck equation and information of non-random functions, Chaos, Solitons and Fractals, 40 (2009), 3, pp.1428-1448.
- Carpinteri, A., Sapora, A., Diffusion problems in fractal media defined on Cantor sets, ZAMM 90 (2010), 3, pp.203-210.
- Yang, X.J., Local Fractional Functional Analysis and Its Applications, (Asian Academic publisher Limited, Hong Kong, 2011).
- Yang, X.J., Local fractional integral transforms, Progress in Nonlinear Science, 4 (2011), pp.1-225.
- Yang, X.J., Advanced Local Fractional Calculus and Its Applications, (World Science Publisher, New York, 2012).
- Su, W.H., Baleanu,D., Yang , X.J., Jafari,H., Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator, Advances in Difference Equations, 2013 (2013),1, pp.97-103.
- Hu, M.S., Baleanu, D., Yang, X. J., One-phase problems for discontinuous heat transfer in fractal media, Mathematical Problems in Engineering, vol.2013, Article ID 358473, 2013.
- Yang, X,J., Baleanu,D., Fractal heat conduction problem solved by local fractional variation iteration method, Thermal Science, 17 (2013),2, pp.625-628.
- Yang, Y,J., Baleanu, D., Yang, X.J., A local fractional variational iteration method for Laplace equation within local fractional operators, Abstract and Applied Analysis, 2013 (2013), Article ID 202650.
- Su, W.H., Baleanu, D., Yang X.J., Jafari, H., Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method, Fixed Point Theory and Applications, 2013 (2013),1, pp.89-102, 2013.
- Hu, M.S., Agarwal, R.P., Yang, X.J., Local fractional Fourier series with application to wave equation in fractal vibrating string, Abstract and Applied Analysis, 2012, Article ID 567401.
- Zhong, W.P., Gao,F., Shen,X.M., Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral, Advanced Materials Research, 461 (2012), pp.306-310.
- He, J.H., Asymptotic methods for solitary solutions and compactions, Abstract and Applied Analysis, 2012, Article ID 916793.
Volume
17,
Issue
3,
Pages707 -713