THERMAL IMPEDANCE ESTIMATIONS BY SEMI-DERIVATIVES AND SEMI-INTEGRALS: 1-D semi-infinite cases

Abstract

Simple 1-D semi-infinite heat conduction problems enable to demonstrate the potential of the fractional calculus in determination of transient thermal impedances under various boundary conditions imposed at the interface (x=0). The approach is purely analytic and very effective because it uses only simple semi-derivatives (half-time) and semi-integrals and avoids development of entire domain solutions.

Dates

  • Submission Date2012-05-22
  • Revision Date2012-11-13
  • Acceptance Date2012-11-20

DOI Reference

10.2298/TSCI120522211H

References

  1. . Carslaw, H.S. , Jaeger, J.C., Conduction of Heat in Solids. Oxford University Press, London, 1959.
  2. Breaux , H.J. , Schlegel, P.T. , Transient heating of thin plates, Int. J Heat Mass Transfer, 13(1970) , 1, pp.218-211.
  3. Muzychka, Y.S., Yovanovich M. M., Culham, J.R., Thermal Spreading Resistance in Compound and Orthotropic Systems, J. Thermophysics and Heat Transfer, 18 (2004) ,1, pp. 45-51.
  4. Schneider, G. E. , Strong, A. B. , Yovanovich , M. M. , Transient thermal response of two bodies , communicating through a small circular contact area , Int. J. Heat Mass Transfer 20 (1977), 4, pp.301-308.
  5. Belghazi, M. H. , Analytical modelling of transient heat transfer due to moving heat sources in bi-layer materials with imperfect contact, PhD Thesis, University of Limoges, Limoges, France, 2008. (in French).
  6. Laraqi , N. , Thermal impedance and transient temperature due to a spot of heat on a half- space , Int. J. Therm Sci., 49 (2010) ,3, pp.529-533,
  7. Laraqi , N. , Contact temperature and flux partition coefficient of heat generated by dry friction between two solids. New approach to flux generation, Int. J. Heat Mass Transfer 35 (11) (1992) ,11, pp.3131-3139.
  8. Laraqi , N. , Bairi, A., Ségui,L., Tempertaure and thermal resistance in frictional devices, Appl. Therm. Eng. 24 (2004) ,17-18, pp. 2567-2581.
  9. Aderghal, N., Loulou, T., Bouchoucha, A. , Rogeon , Ph.Analytical and numerical calculation of surface temperature and thermal constriction resistance in transient dynamic strip contact , Appl. Therm. Eng., 31 (2011) ,8-9, pp.1527-1535 .
  10. Gabano, J.-D. Poinot , T. Fractional modelling and identification of thermal systems , Signal Processing, 91 (2011) ,3, pp.531-541.
  11. Zubair, S.M., Chaudhry, M.A., Some analytical solutions of time-dependent, continuously operating heat sources. Heat Mass Transfer, 28(1993) ,4, pp.217-223.
  12. Hou, Z.B. , Komanduri, R. , General solutions for stationary/moving plane heat source problems in manufacturing and tribology, Int. J. Heat Mass Transfer. 43 (2000) ,10, pp.1679-1698.
  13. Agrawal , O. P. , Application of Fractional Derivatives in Thermal Analysis of Disk Brakes , Nonlinear Dynamics , 38( 2004) ,1-4, pp.191-206.
  14. Ganaoui, M. El., Laraqi, N. Analytical computation of transient heat transfer macro-constriction resistance: application to thermal spraying processes, Comptes Rendus Mécanique, 30 (2012) ,7, PPP. 536-542.
  15. Turyk, P.J. , Yovanovich, M.M. , Transient constriction resistance for elemental flux channels heated by uniform flux sources 22nd Heat Transfer Conference,ASME (1984) ,Paper No 84-HT-52, August, Niagara Falls, N.Y.
  16. Oldham , K.B. , Spanier ,J. , The Fractional calculus , Academic Press, New York, 1974.
  17. Kulish , V.V. , Lage, J.L. , Fractional-diffusion solutions for transient local temperature and heat flux, J. Heat Transfer, 122 (2000) ,2, pp. 372-376.
  18. Siddique, I. , Vieru, D. , Stokes flows of a Newtonian fluid with fractional derivatives and slip at the wall, Int. Rev. Chem. Eng., 3 (2011) ,6, pp.822- 826.
  19. Qi , H. , Xu, M. , Some unsteady unidirectional flows of a generalized Oldroyd-B fluid with fractional derivative, Appl. Math. Model., 33 (2009) ,11, pp.4184-4191.
  20. dos Santos, M.C, Lenzi, E. , Gomes, E.M., Lenzi,, M.K. , Lenzi, E.K. , Development of Heavy Metal sorption Isotherm Using Fractional Calculus, Int. Rev. Chem. Eng., 3 (2011) ,6, pp.814-817.
  21. Hristov J., Starting radial subdiffusion from a central point through a diverging medium (a sphere): Heat-balance Integral Method, Thermal Science, 15 (2011), supl. 1 ,pp.S5-S20 .
  22. Pfaffenzeller, R.A., Lenzi, M.K., Lenzi, E.K. , Modeling of Granular Material Mixing Using Fractional Calculus, Int. Rev. Chem. Eng., 3 (2011) ,6, pp. 818-821.
  23. Meilanov, R.P., Shabanova, M.R. , Akhmedov, E.N. , A Research Note on a Solution of Stefan Problem with Fractional Time and Space Derivatives, Int. Rev. Chem. Eng., 3 (2011) ,6, pp. 810-813.
  24. Voller, V.R. , An exact solution of a limit case Stefan problem governed by a fractional diffusion equation, Int. J. Heat Mass Transfer, 53 (2010) ,23-24, pp.5622-5625.
  25. Liu, J. , Xu, M. , Some exact solutions to Stefan problems with fractional differential equations, J. Math. Anal. Appl., 351(2010) ,2, pp. 536-542
  26. Debnath, L., Nonlinear Partial Differential Equations for Scientist and Engineers, Birkhouser, Boston, 1997.
  27. Babenko, Yu. I., Heat-Mass Transfer. Methods for calculation of thermal and diffusional fluxes, Khimia Publ., Moscow, 1984 (in Russian).
  28. Abramovitz, M., Stegun, I.A., Handbook of mathematical functions. Dover, New York, 1964.
Volume 17, Issue 2, Pages581 -589