NUMERICAL PERFORMANCE STUDY OF PARAFFIN WAX DISPERSED WITH ALUMINA IN A CONCENTRIC PIPE LATENT HEAT STORAGE SYSTEM
Abstract
Latent heat energy storage systems using paraffin wax could have lower heat transfer rates during melting/freezing processes due to its inherent low thermal conductivity. The thermal conductivity of paraffin wax can be enhanced by employing high conductivity materials such as alumina (Al2O3). A numerical analysis has been carried out to study the performance enhancement of paraffin wax with nanoalumina (Al2O3) particles in comparison with simple paraffin wax in a concentric double pipe heat exchanger. Numerical analysis indicates that the charge-discharge rates of thermal energy can be greatly enhanced using paraffin wax with alumina as compared with a simple paraffin wax as PCM.
Dates
- Submission Date2011-04-17
- Revision Date2011-12-21
- Acceptance Date2011-12-21
References
- Ismail, K.A.R and Gonçalves, M.M., Analysis of a latent heat cold storage unit, Int. Journal of Energy Research, vol 21, pp 1223-1239, 1997
- Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D., Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, 13 (2009), pp. 318-345.
- Lacroix, M., Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube. International, Journal of Heat Mass Transfer 36 (1993), pp. 2083-2092.
- A numerical parametric study of the alternating finned geometry for latent heat storage applications, Journal of Energy Conversion Management, 2001
- Cabeza, L.F. , Mehling, H. , Hiebler, S., Ziegler, F., Heat transfer enhancement in water when used as PCM in thermal energy storage, Applied Thermal Engineering, 22 (2002), pp. 1141- 1151.
- Mettawee, E.S., Assassa, G.M.R., Thermal conductivity enhancement in a latent heat storage system, Solar Energy, 81 (2007), pp. 839-845.
- Khodadadi, J.M., Hosseinizadeh, S.F., Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage, International Communication in Heat Mass Transfer, 34 (2007), pp. 534-543.
- Zeng, J.L., Sun, L.X., Xu, F., Tan, Z.C., Zhang, Z.H., Zhang, J. , Study of a PCM based energy storage system containing Ag nanoparticles, Journal of Thermal Analysis Calorimetry, 87 (2007), pp. 369-373.
- Pincemin, S., Py, X., Olives, R., Christ, M., Oettinger, O., Elaboration of conductive thermal storage composites made of phase change materials and graphite for solar power plant, ASME Journal of Solar Energy Engineering, 130 (2008), pp. 11005-11009.
- Kim, S., Drzal, L.T., High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets, Solar Energy Materials and Solar Cells, 93 (2009), pp. 136-142.
- Wang, X.Q., Mujumdar, A.S., Heat transfer characteristics of nanofluids - a review, International Journal of Thermal Sciences, 46 (2007), pp.1-19.
- Ho, C.J. , Gao, T.Y., Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material, International Communications in Heat and Mass Transfer, 36 (2009), pp. 467-470.
- Z.X. Gong, A.S. Mujumdar, A new solar receiver thermal store for space-based activities using multiple composite phase change materials, ASME Journal of Solar Energy Engineering 117 (1995) 215-220.
- Gong, Z. X., Mujumdar, A.S., Cyclic heat transfer in a novel storage unit of multiple phase change materials, Applied Thermal Engineering, 16(1996), 10, pp. 807-815.
- Gong, Z. X., Mujumdar, A.S., Enhancement of energy charge-discharge rates in composite slabs of different phase change materials, International Journal of Heat and Mass Transfer, 39 (1996), 4, pp. 725- 733.
- Gong, Z. X., Mujumdar, A.S., Thermodynamic optimization of the thermal process in energy storage using multiple phase change materials, Applied Thermal Engineering, 17 (1997), 11, pp. 1067-1083.
- Hasan, M., Mujumdar, A.S., Weber, M.E., Cyclic melting and freezing, Chemical Engineering Science, 46 (1991), 7, pp. 1573-1587.
- www.fluent.com.
- Ravi Kandasamy, Wang, X.Q., Mujumdar, A.S., Transient cooling of electronics using phase change material (PCM)-based heat sinks, Applied Thermal Engineering, 28 (2008), pp. 1047- 1057.
- Sasmito, A.P., Kurnia, J.C., Mujumdar, A.S., Numerical Evaluation of Laminar Heat Transfer Enhancement in Nanofluid Flow in Coiled Square Tubes, The Nanoscale Research Letters, (2011) Accepted for Publication.
- Chow, L.C., Zhong, J.K., Thermal conductivity enhancement for Phase change storage media, International Communications in Heat and Mass Transfer, 23 (1996), pp. 91-100.
- Vajjha, R.S., Das, D. K., Namburu, P. K., Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator, International Journal of Heat Fluid Flow, 31 (2010). pp. 613-621.
Volume
17,
Issue
2,
Pages419 -430