TRANSPORT AND STRAINING OF SUSPENSIONS IN POROUS MEDIA: EXPERIMENTAL AND THEORETICAL STUDY

Abstract

An analytical model for deep bed filtration of suspension in porous media and training under size exclusion capture mechanism is developed and validated by laboratory tests on suspension flow in engineered media. The fraction of swept particles is introduced in the inlet boundary condition. The model is successfully matched with the results from column experiments, predicting the suspended particle concentrations at the outlet.

Dates

  • Submission Date2012-08-01
  • Revision Date2012-09-07
  • Acceptance Date2012-09-12

DOI Reference

10.2298/TSCI1205344A

References

  1. Bedrikovetsky, P. G., Mathematical Theory of Oil & Gas Recovery (With applications to ex-USSR oil & gas condensate fields), Kluwer, London, 1993
  2. Bradford, S. A., Torkzaban, S., Wiegmann, A., Pore-Scale Simulations to Determine the Applied Hydrodynamic Torque and Colloid Immobilization, Vadose Zone Journal, 10 (2011), 1, pp. 252-261
  3. Torkzaban, S., et al., Impacts of Bridging Complexation on the Transport of Surface-modified Nanoparticles in Saturated Sand, Journal of Contaminant Hydrology, 136-137 (2012), Aug., pp. 86-95
  4. Yu, M., Lin, J. Z., Chan, T. L., Effect of Precursor Loading on Non-Spherical TiO2 Nanoparticle Synthesis in a Diffusion Flame Reactor, Chem. Eng. Sci, 63 (2008), 9, pp. 2317-2329
  5. Yu, M., Lin, J. Z., Taylor-Expansion Moment Method for Agglomerate Coagulation due to Brownian Motion in the Entire Size Regime, Journal of Aerosol Science, 40 (2009), 6, pp. 549-562
  6. Yu, M., Lin, J. Z., Chan, T. L., Numerical Simulation of Nanoparticle Synthesis in Diffusion Flame Reactor, Powder Technology, 181 (2008), 1, pp. 9-20
  7. Yu, M., Lin, J. Z., Chan, T. L., A New Moment Method for Solving the Coagulation Equation for Particles in Brownian Motion, Aerosol Science and Technology, 42 (2008), 9, pp. 705-713
  8. Bedrikovetsky, P., Upscaling of Stochastic Micro Model for Suspension Transport in Porous Media, Transport in Porous Media, 75 (2008), 3, pp. 335-369
  9. Chalk, P., et al., Pore Size Distribution from Challenge Coreflood Testing by Colloidal Flow, Chemical Engineering Research and Design, 90 (2012), 1, pp. 63-77
  10. Barenblatt, G. I., Entov, V. M., Rizhik, V. M., Theory of Fluid Flows through Natural Rocks, Kluwer, London, 1987
  11. Ilina, T., et al., A Pseudo Two-Phase Model for Colloid Facilitated Transport in Porous Media, Transport in Porous Media, 71 (2008), 3, pp. 311-329
  12. Bedrikovetsky, P. G., WAG Displacements of Oil-Condensates Accounting for Hydrocarbon Ganglia, Transport in Porous Media, 52 (2003), 2, pp. 229-266
Volume 16, Issue 5, Pages1344 -1348