Numerical Algorithm based on Fast Convolution for Fractional Calculus

Abstract

In this paper, numerical algorithms based on fast convolution for the fractional integral and fractional derivative are proposed. Two examples are also included which show the efficiency of the derived method.

Dates

  • Submission Date2011-04-07
  • Revision Date2011-07-11
  • Acceptance Date2011-07-18

DOI Reference

10.2298/TSCI110407074C

References

  1. Lubich, C., Schadle, A., Fast convolution for nonreflecting boundary conditions, SIAM J. Sci. Comput., 24 (2002), 1, pp. 161-182
  2. Schadle, A., López-Fernández, M., Lubich, C., Fast and oblivious convolution quadrature, SIAM J. Sci. Comput., 28 (2006), 2, pp. 421-438
  3. López-Fernández, M., Lubich, C., Schädle, A., Adaptive, fast and oblivious convolution in evolution equations with memory, SIAM J. Sci. Comput., 30 (2007), 2, pp. 1015-1037
  4. Li, C. P., Deng, W. H., Remarks on fractional derivatives, Appl. Math. Comput., 187 (2007), 2, pp. 777-784
  5. Diethelm, K., Ford, N. J., Freed, A. D., Luchko, Yu., Algorithms for the fractional calculus: a selection of numerical methods, Comput. Methods Appl. Mech. Eng., 194 (2005), 6-8, pp.743-773
  6. López-Fernández, M., Palencia C., Schädle, A., A spectral order method for inverting sectorial Laplace transforms, Comput. SIAM J. NUMER. ANAL., 44 (2006), 3, pp. 1332-1350
  7. López-Fernández, M., Palencia C., On the numerical inversion of the Laplace transform of certain holomorphic mappings, Appl. Numer. Math., 51 (2004), 2-3, pp. 289-303
  8. Li, C. P., Chen, A., Ye, J. J., Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Phys., 230 (2011), 9, pp. 3352-3368
  9. Li, C. P., Tao, C. X., On the fractional Adams method, Comput. Math. Appl., 58 (2009), 8, pp. 1573-1588
Volume 16, Issue 2, Pages365 -371