NUMERICAL SIMULATION OF THE FRACTIONAL LANGEVIN EQUATION
Abstract
In this paper, we study the fractional Langevin equation, whose derivative is
in Caputo sense. By using the derived numerical algorithm, we obtain the
displacement and the mean square displacement which describe the dynamic
behaviors of the fractional Langevin equation.
Dates
- Submission Date2011-04-07
- Revision Date2011-07-11
- Acceptance Date2011-07-18
References
- Oldham, K. B., Spainer, J., The Fractional Calculus, Academic Press, New York, USA, 1974
- Podlubny, I., Fractional Differential Equations, Academic Press, New York, USA, 1999
- Kilbas, A., Srivastava, H., Trujillo, J., Theory and Applications of Fractional Differential Equations, Elsevier Science Ltd., Netherlands, 2006
- Das, S., Functional Fractional Calculus for System Identification and Controls, Springer-Verlag, Berlin, Germany, 2008
- Gorenflo, R., Fractional Calculus, Springer-Verlag, New York, USA, 1997
- Gorenflo, R., Mainardi, F., Random Walk Models for Space-Fractional Diffusion Process, Fractional Calculus and Applied Analysis, 1 (1998), 2, pp. 167-191
- Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000
- Li, C. P., Dao, X. H., Guo, P., Fractional derivatives in complex planes, Nonlinear Analysis: TMA, 71 (2009), 5-6, pp. 1857-1869
- Li, C. P., Deng, W. H., Remarks on fractional derivatives, Appl. Math. Comput., 187 (2007), 2, pp. 777-784
- Li, C. P., Qian, D. L., Chen, Y. Q., On Riemann-Liouville and Caputo derivatives, Discrete Dynamics in Nature and Society, 2011 (2011), article 562494
- Li, C. P., Zhao, Z. G., Chen, Y. Q., Numerical approximation of nonlinear fractional differential equuations with subdiffusion and superdiffusion, Comput. Math. Appl., (2011), doi: 10.1016/j.camwa.2011.02.045
- Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Interscience Publication, USA, 1993
- Zaslavsky, G. M., Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, UK, 2005
- Mainardi, F., Gorenflo. R., On Mittag-Leffler-type functions in fractional evolution process, J. Comput. Appl. Math., 118 (2000), 1-2, pp. 283-299
- Mainardi, F., The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9 (1996), 6, pp. 23-28
- Fa, K. S., Fractional Langevin equation and Riemann-Liouville fractional derivative, Eur. Phys. J. E, 24 (2007), 2, pp. 139-143
- Eab, C. H., Lim, S. C., Fractional generalized Langevin equation approach to single-file diffusion, Physica A, 389 (2010), 13, pp. 2510-2521
- Lutz, E., Fractional Langevin equation, Phys. Rev. E, 64 (2001), 5, article 051106
- Fa, K. S., Generalized Langevin equation with fractional derivative and long-time correlation function, Phys. Rev. E, 73 (2006), 6, article 061104
- Kobolev, V., Romanov, E., Fractional Langevin equation to describe anomalous diffusion, Progr. Theor. Phys. Suppl. No. 139 (2000), pp. 470-476
- West, B. J., Picozzi, S., Fractional Langevin model of memory in financial market, Phys. Rev. E, 65 (2002), 3, article 037106
- Wang, K., Lung, C., Long-time correlation effects and fractal Brownian motion, Phys. Lett. A, 151 (1990), 3-4, pp. 119-121
- Lim, S. C., Li, M., Teo, L. P., Langevin equation with two fractional orders, Phys. Lett. A, 372 (2008), 42, pp. 6309-6320
Volume
16,
Issue
2,
Pages357 -363