NUMERICAL SIMULATION OF THE FRACTIONAL LANGEVIN EQUATION

Abstract

In this paper, we study the fractional Langevin equation, whose derivative is in Caputo sense. By using the derived numerical algorithm, we obtain the displacement and the mean square displacement which describe the dynamic behaviors of the fractional Langevin equation.

Dates

  • Submission Date2011-04-07
  • Revision Date2011-07-11
  • Acceptance Date2011-07-18

DOI Reference

10.2298/TSCI110407073G

References

  1. Oldham, K. B., Spainer, J., The Fractional Calculus, Academic Press, New York, USA, 1974
  2. Podlubny, I., Fractional Differential Equations, Academic Press, New York, USA, 1999
  3. Kilbas, A., Srivastava, H., Trujillo, J., Theory and Applications of Fractional Differential Equations, Elsevier Science Ltd., Netherlands, 2006
  4. Das, S., Functional Fractional Calculus for System Identification and Controls, Springer-Verlag, Berlin, Germany, 2008
  5. Gorenflo, R., Fractional Calculus, Springer-Verlag, New York, USA, 1997
  6. Gorenflo, R., Mainardi, F., Random Walk Models for Space-Fractional Diffusion Process, Fractional Calculus and Applied Analysis, 1 (1998), 2, pp. 167-191
  7. Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000
  8. Li, C. P., Dao, X. H., Guo, P., Fractional derivatives in complex planes, Nonlinear Analysis: TMA, 71 (2009), 5-6, pp. 1857-1869
  9. Li, C. P., Deng, W. H., Remarks on fractional derivatives, Appl. Math. Comput., 187 (2007), 2, pp. 777-784
  10. Li, C. P., Qian, D. L., Chen, Y. Q., On Riemann-Liouville and Caputo derivatives, Discrete Dynamics in Nature and Society, 2011 (2011), article 562494
  11. Li, C. P., Zhao, Z. G., Chen, Y. Q., Numerical approximation of nonlinear fractional differential equuations with subdiffusion and superdiffusion, Comput. Math. Appl., (2011), doi: 10.1016/j.camwa.2011.02.045
  12. Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Interscience Publication, USA, 1993
  13. Zaslavsky, G. M., Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, UK, 2005
  14. Mainardi, F., Gorenflo. R., On Mittag-Leffler-type functions in fractional evolution process, J. Comput. Appl. Math., 118 (2000), 1-2, pp. 283-299
  15. Mainardi, F., The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9 (1996), 6, pp. 23-28
  16. Fa, K. S., Fractional Langevin equation and Riemann-Liouville fractional derivative, Eur. Phys. J. E, 24 (2007), 2, pp. 139-143
  17. Eab, C. H., Lim, S. C., Fractional generalized Langevin equation approach to single-file diffusion, Physica A, 389 (2010), 13, pp. 2510-2521
  18. Lutz, E., Fractional Langevin equation, Phys. Rev. E, 64 (2001), 5, article 051106
  19. Fa, K. S., Generalized Langevin equation with fractional derivative and long-time correlation function, Phys. Rev. E, 73 (2006), 6, article 061104
  20. Kobolev, V., Romanov, E., Fractional Langevin equation to describe anomalous diffusion, Progr. Theor. Phys. Suppl. No. 139 (2000), pp. 470-476
  21. West, B. J., Picozzi, S., Fractional Langevin model of memory in financial market, Phys. Rev. E, 65 (2002), 3, article 037106
  22. Wang, K., Lung, C., Long-time correlation effects and fractal Brownian motion, Phys. Lett. A, 151 (1990), 3-4, pp. 119-121
  23. Lim, S. C., Li, M., Teo, L. P., Langevin equation with two fractional orders, Phys. Lett. A, 372 (2008), 42, pp. 6309-6320
Volume 16, Issue 2, Pages357 -363