NON-DARCY POROUS MEDIA FLOW IN NO-SLIP AND SLIP REGIMES

Abstract

In this paper Lattice Boltzmann equation method is used to simulate non-Darcy flow in porous media. Two-dimensional in-line and staggered arrangements of uniform cylinders have been considered. The results of a comprehensive computational evaluation are reported: the range of validity of Darcy-Forchheimer equation is investigated and correlations for macroscopic transport properties are presented (i.e., for the permeability and the inertial parameter). Our investigation covers both no-slip and the slip-flow regimes.

Dates

  • Submission Date2010-09-29
  • Revision Date2012-01-16
  • Acceptance Date2012-01-17

DOI Reference

10.2298/TSCI100929001M

References

  1. Vafai, K., Handbook of Porous Media. Marcel Dekker, New York, USA, 2000
  2. Nield, D., Bejan, A., Convection in Porous Media. Springer, New York, USA, 1998
  3. Beskok, A., Karniadakis, G. E., Simulation of Heat and Momentum Transfer in Complex Microgeometries, J. Thermophys. Heat Transfer, 8 (1994) pp. 647- 65
  4. Karniadakis, G. E., Beskok, A., Microflows: Fundamentals and Simulation. Springer, New York, USA, 2002
  5. Miguel, A. F., Serrenho, A., On the experimental evaluation of the permeability in porous media using a gas flow method, Journal of Physics D, 40 (2007) pp. 6824-6828
  6. Beskok, A., Karniadakis, G. E., A model for flows in channels, pipes, and ducts at micro and nano scales, Microscale Thermophys. Engng, 3 (1999) pp. 43-77
  7. Succi, S., The lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, Oxford, UK, 2001
  8. Pan, C., Luo, L.-S., Miller, C T., An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Computers & Fluids, 35 (2006) pp. 898-909
  9. Qian, Y. H., d'HumiƩres, D., Lallemand, P., Lattice-BGK models for Navier-Stokes equation, Europhys. Lett., 17 (1992) pp. 479-484
  10. He, X., Luo, L. S., Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 56 (1997) pp. 6811-6817
  11. Chen, F., Xu, A., Zhang, G., Li, Y., Multiple-relaxation-time lattice Boltzmann model for compressible fluids, Physics Letters A, 375 (2011) pp. 2129-2139
  12. Lallemand, P., Luo, L.-S., Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 61 (2000) pp. 6546-6562
  13. Jeong, N., Choi, D. H., Lin, C.-L., Estimation of thermal and mass diffusivity in a porous medium of complex structure using a lattice Boltzmann method, International Journal of Heat and Mass Transfer, 51 (2008) pp. 3913-3923
  14. Koponen, A., Kandhai, D., Hellne, E., Alava, M., Hoekstra, A., Kataja, M., Niskanen, K., Sloot, P., Timonen, J., Permeability of three dimensional random fiber web, Physics Review Letters, 80 (1998) pp. 716-719
  15. Manwart, C., Aaltosalmi, U., Koponen, A., Hilfer, R., Timonen, J., Lattice-Boltzmann and finitedifference simulations for the permeability for three-dimensional porous media, Phys. Rev. E, 66 (2002) pp. 016702
  16. Wu, H.R., He, Y.L., Tang, G.H., Tao, W.Q., Lattice Boltzmann simulation of flow in porous media on non-uniform grids, Progress in Computational Fluid Dynamics, 5 (2005) pp. 97-103
  17. Jeong, N., Choi, D. H., Lin, C.-L., Prediction of Darcy-Forchheimer drag for micro-porous structures of complex geometry using the lattice Boltzmann method, J. Micromech. Microeng., 16 (2006) pp. 2240
  18. Mendoza, M., Wittel, F.K., Herrmann, H. J., Simulation of flow of mixtures through anisotropic porous media using a Lattice Boltzmann Model. European Physical Journal E, 32 (2010) pp. 339-348
  19. Qian, Y., d'Humieres, D., Lallemand, P., Recovery of Navier-Stokes equations using a lattice-gas Boltzmann method, Europhysics Letters, 17 (1992) pp. 479-484
  20. Dunweg, B., Schiller, U. D., Ladd, A. J. C., Statistical mechanics of the fluctuating lattice Boltzmann equation, Phys. Rev. E, 76 (2007) pp. 036704
  21. Chopard, B., Droz, M., Cellular automata modelling of physical systems, Cambridge University Press, Cambridge, UK, 1998
  22. Kim, J., Lee, J., Lee, K. O., Nonlinear correction to Darcy's law for a flow through periodic arrays of elliptic cylinders, Physica A, 293 (2001) pp. 13-20
  23. Serrenho, A., Miguel, A. F., Simulation and characterization of high porosity media for aerosol particle processing, Journal of Porous Media, 12 (2009) pp. 1129-1138
  24. Miguel, A. F., van de Braak, N. J., Silva, A. M., Bot, G. P. A., Wind-induced airflow through permeable materials: part I, Journal of Wind Eng. and Ind. Aerodynamics, 89 (2001) pp. 45-57
  25. Serrenho, A., Miguel, A. F., Fluid flow and solid/fluid suspensions flow in 3-D packed beds of spheres: the effect of periodicity of fixed beds, Defect and Diffusion Forum 315 (2011) pp. 871- 876
  26. Carman, P. C., Flow of Gases through Porous Media, Butterworths, London, UK, 1956
  27. Pinela, J., Kruz, S., Miguel, A. F., Reis, A. H., Aydin, M., Permeability-porosity relationship assessment by 2D numerical simulations. Proc. 16th International Symposium on Transport Phenomena, Prague, Czech Republic, 2005.
  28. Miguel, A. F., Airflow through porous screens: from theory to practical considerations, Energy and Buildings, 28 (1998) pp. 63-69
  29. Ergun, S., Fluid flow through packed columns, Chem. Engng. Prog., 48 (1952) pp. 89-94
Volume 16, Issue 1, Pages167 -176