ON THE APPLICABILITY OF THE EQUIPARTITION THEOREM
Abstract
Generalization of the equipartition theorem is presented for a broad range of potentials U(x) with quadratic minimum. It is shown, that the equipartition of energy in its standard form appears at the low temperatures limit. For potentials demonstrating the quadratic behavior for large displacements from the equilibrium the equipartition holds also in the high temperature limit. The temperature range of applicability of the equipartition theorem for the potential U = ax2 + bx4 was established.
Dates
- Submission Date2010-03-11
- Revision Date2010-03-12
- Acceptance Date2010-03-12
References
- Landau, L., Lifshitz, E., Statistical Physics (Course of Theoretical Physics, vol. 5), Butterworth- -Heinemann, Oxford, UK, 2000
- Baierlein, R., Thermal Physics, Cambridge University Press, Cambridge, UK, 2003
- van Hemmen, J. L., A Generalized Equipartition Theorem, Physics Letters A, 79 (1980), 1, pp. 25-28
- Lawrence, E., Turner, L. E., Jr., Generalized Classical Equipartition Theorem, Am. J. Phys., 44 ( 1976), 1, pp. 104-105
- Landsberg, P. T., Generalized Equipartition, Am. J. Phys., 46 (1978), 3, p. 296
- Landsberg, P. T., Equipartition for a Relativistic Gas, Am. J. Phys., 60 (1992), 6, p. 561
- Lawless, W. N., Energy Equipartition: A Restatement, Am. J. Phys., 32 (1964), 9, pp. 686-687
- MartÃnez, S., et al., On the Equipartition and virial Theorems, Physica A, 305 (2002), 1-2, pp. 48-51
- Plastino, A. R., Lima, J. A. S., Equipartition and Virial Theorems within General Thermostatistical Formalisms, Physics Letters A, 260 (1999), 1-2, pp. 46-54
- Levashov, V. A., et al., Equipartition Theorem and the Dynamics of Liquids, Physical Review E, 78 (2008), p. 064205
- Oberhofer, H., Dellago, Ch., Boresch, St., Single Molecule Pulling with Large Time Steps, Physical Review E, 75 (2007), p. 061106
- Fujii, K., Aikawa, Y., Ohoka, K., Structural Phase Transition and Anharmonic Effects in Crystals, Physical Review B, 63 (2001), p. 104107
- Gradshteyn, I. S., Ryzhik, I. M., Table of Integrals, Series, and Products, 7th ed., Academic Press, New York, USA, 2007
- Arfken, G. B., Weber, H. J., Mathematical Methods for Physicists, 5th ed., Harcourt/Academic Press, San Diego, Cal., USA, 2001
Volume
14,
Issue
3,
Pages855 -858