OPTIMAL TEMPERATURES AND MAXIMUM POWER OUTPUT OF A COMPLEX SYSTEM WITH LINEAR PHENOMENOLOGICAL HEAT TRANSFER LAW

Abstract

A complex system including several heat reservoirs, finite thermal capacity subsystems with different temperatures and a transformer (heat engine or refrigerator) with linear phenomenological heat transfer law [q proportional to DT-1] is studied by using finite time thermodynamics. The optimal temperatures of the subsystems and the transformer and the maximum power output (or the minimum power needed) of the system are obtained.

Dates

  • Submission Date2008-11-09
  • Revision Date2009-04-14
  • Acceptance Date2009-04-30

DOI Reference

10.2298/TSCI0904033C

References

  1. Curzon, F. L., Ahlborn, B., Efficiency of a Carnot Engine at Maximum Power Output, Am. J. Phys., 43 (1975), 1, pp. 22-24
  2. Andresen, B., Finite Time Thermodynamics, Physics Laboratory II, University of Copenhagen, Copenhagen,1983
  3. Andresen, B., et al., Thermodynamics for Processes in Finite Time, Acc. Chem. Res. 17 (1984), 8, pp. 266-271
  4. Sieniutycz, P., Salamon, P., Advances in Thermodynamics, Vol. 4: Finite Time Thermodynamics and Thermoeconomics, Taylor & Francis, New York, USA, 1990
  5. Radcenco, V., Generalized Thermodynamics, Editura Techica, Bucharest, Romania, 1994
  6. Sieniutycz, S., Shiner, J. S., Thermodynamics of Irreversible Processes and Its Relation to Chemical Engineering: Second Law Analyses and Finite Time Thermodynamics, J. Non-Equilib. Thermodyn., 19 (1994), 4, pp.303-348
  7. Feidt, M., Thermodinamic and Energy Optimization of the Systems and Processes (2nd ed.) (in French), Technique et Documentation, Lavoisier, Paris, 1996
  8. Bejan, A., Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite Time Processes, J. Appl. Phys., 79 (1996), 3, pp. 1191-1218
  9. Chen, L., Wu, C., Sun, F., Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems, J. Non-Equilib. Thermodyn., 24 (1999), 4, pp. 327-359
  10. Berry, R. S., et al., Thermodynamic Optimization of Finite Time Processes, John Wiley and Sons Ltd., Chichester, UK, 1999
  11. Radcenco, V., Vasilescu, E. E, Feidt, M., Thermodynamic Optimization of Direct Cycles, Termotehnica (2003), 1-2, pp. 26-31
  12. Sieniutycz, S., Thermodynamic Limits on Production or Consumption of Mechanical Energy in Practical and Industry Systems, Progress Energy & Combustion Science, 29 (2003), 3, pp. 193-246
  13. Chen, L., Sun, F., Advances in Finite Time Thermodynamics: Analysis and Optimization, Nova Science Publishers, New York , USA, 2004
  14. Sieniutycz, S. , Farkas, H., Variational and Extremum Principles in Macroscopic Systems, Elsevier Science Publishers, London, UK, 2005
  15. Chen, L., Finite-Time Thermodynamic Analysis of Irreversible Processes and Cycles (in Chinese), Higher Education Press, Beijing, 2005
  16. Radcenco, V., et al., New Approach to Thermal Power Plants Operation Regimes Maximum Power versus Maximum Efficiency, Int. J. Thermal Sciences, 46 (2007), 12, pp. 1259-1266
  17. Amelkin, S. A., et al., Maximum Power Process for Multi-Source Endoreversible Heat Engines, J. Phys. D: Appl. Phys., 37 (2004), 9, pp. 1400-1404
  18. Amelkin, S. A., et al., Thermo-Mechanical Systems with Several Heat Reservoirs: Maximum Power Processes, J. Non-Equlib. Thermodyn., 30 (2005), 1, pp. 67-80
  19. Tsirlin, A. M., Mironova, V. A., Amelkin, S. A., Finite-Time Thermodynamics: Conditions of Minimal Dissipation for Thermodynamic Process with Given Rate, Phys. Rev. E, 58 (1998), 1, pp. 215-223
  20. Tsirlin, A. M., Kazakov, V. A., Maximal Work Problem in Finite-Time Thermodynamics, Phys. Rev. E, 62 (2000), 1, pp.307-316
  21. Tsirlin, A. M., Kazakov, V. A., Kolinko, N. A., Irreversibility and Limiting Possibilities of Macrocontrolled Systems: I. Thermodynamics; II. Microeconomics, Open Sys. Inf. Dyn., 8 (2001), 4, pp. 315-347
  22. Tsirlin, A. M., Kazakov, V. A., Optimal Processes in Irreversible Thermodynamics and Microeconomics, Int. Description of Complex Systems, 21 (2004), 1, pp. 29-42
  23. Tsirlin, A. M., Kazakov, V. A., Trushkov, V. V., Controllable Open Macrosystems in Thermodynamics and Microecnomics, Open Sys. Inf. Dyn., 12 (2005), 4, pp. 347-363
  24. Huleihil, M., Andresen, B., Optimal Piston Trajectories for Adiabatic Processes in the Presence of Friction, J. Appl. Phys., 100 (2006), 11, pp. 114914(1-6)
  25. Tsirlin, A. M., et al., Thermodynamic Constraints on Temperature Distribution in a Stationary System with Heat Engine or Refrigerator, J. Phys. D: Appl. Phys., 39 (2006), 19, pp. 4269-4277
  26. De Vos, A., Efficiency of Some Heat Engines at Maximum Power Conditions, Am. J. Phys., 53 (1985), 6, pp. 570-573
  27. Chen, L., Yan, Z., The Effect of Heat Transfer Law on the Performance of a Two-Heat-Source Endoreversible Cycle, J. Chem. Phys., 90 (1989), 7, pp. 3740-3743
  28. Chen, L., Sun, F., Wu, C., Influence of Heat Transfer Law on the Performance of a Carnot Engine, Appl. Thermal Engng., 17 (1997), 3, pp. 277-282
  29. Chen, L., et al., Optimal Configuration and Performance of Heat Engines with Heat Leak and Finite Heat Capacity, Open Sys. Inf. Dyn., 9 (2002), 1, pp. 85-96
  30. Chen, L., et al., Optimal Configurations and Performance for a Generalized Carnot Cycle Assuming the Heat Transfer Law, Appl. Energy, 78 (2004), 3, pp. 305-313
  31. Sieniutycz, S., Kuran, P., Modeling Thermal Behavior and Work Flux in Finite-Rate Systems with Radiation, Int. J. Heat Mass Transfer, 49 (2006), 17-18, pp. 3264-3283
  32. Kuran, P., Nonlinear Models of Production of Mechanical Energy in Non-Ideal Generators Driven by Thermal or Solar Energy(in Polish), Ph. D. thesis, Warsaw University of Technology, Warsaw, 2006
Volume 13, Issue 4, Pages33 -40