MEASURABLE VALUES, NUMBERS AND FUNDAMENTAL PHYSICAL CONSTANTS: IS THE BOLTZMANN CONSTANT kB A FUNDAMENTAL PHYSICAL CONSTANT?

Abstract

The status of fundamental physical constants is discussed. The nature of fundamental physical constants is cleared up, based on the analysis of the Boltzmann constant. A new definition of measurable values, "mathematical" and "physical" numbers and fundamental physical constants is proposed. Mathematical numbers are defined as values insensitive to the choice of both units and frames of reference, whereas "physical numbers" are dimensionless values, insensitive to transformations of units and sensitive to the transformations of the frames of reference. Fundamental constants are classified as values sensitive to transformations of the units and insensitive to transformations of the frames of reference. It is supposed that a fundamental physical constant necessarily allows diminishing the number of independent etalons in a system of units.

Dates

  • Submission Date2009-08-01
  • Revision Date2009-08-15
  • Acceptance Date2009-10-07

DOI Reference

10.2298/TSCI0904253B

References

  1. McNaught, A. D., Wilkinson, A., IUPAC Compendium of Chemical Terminology, The Royal Society of Chemistry, Cambridge, Blackwell Scientific Publications, Oxford, UK, 1997
  2. Mohr, P. J., Taylor, B. N., CODATA Recommended Values of the Fundamental Physical Constants: 2002, Reviews of Modern Physics, 77 (2005), 1, pp. 1-107
  3. Alonso, M., Finn, E. J., Physics, Addison Wesley Publ. Comp., Reading, Mass., USA, 1996
  4. Fishbane, M., Gasiorovitch, St., Thornton, T., Physics for Scientists and Engineers, Prentice Hall Inc., Upper Saddle River, N. J., USA, 1996
  5. Pohl, R.W. Mechanic, Acoustic and Thermodynamic (in German), Springer Verlag, Berlin, Göttingen, 1964
  6. Resnik, R., Holliday, D., Krane, K., Physics, John Wiley & Sons, New York, USA, 2001
  7. Sears, F. W., Zemansky, M. W., University Physics, Addison Wesley Publ. Comp., Reading, Mass., USA, 1970
  8. Landau, L. D., Lifshitz, E. M., Statistical Physics, Butterworth-Heinemann, Oxford, UK, 2000
  9. Feynman, R. P., Leighton, R. B., Sands, M., The Feynman Lectures on Physics, V. 1, Addison Wesley Publ. Comp., Reading, Mass., USA, 1963
  10. Reif, F., Statistical Physics, Berkeley Physics Course, V. 5, McGraw Hill, New York, USA, 1967
  11. Kittel, C., Elementary Statistical Physics, John Wiley & Sons, New York, USA, 1960
  12. Kittel, C., Thermal Physics, John Wiley & Sons, New York, USA, 1977
  13. Lavenda, B. H., Statistical Physics: A Probabilistic Approach, John Wiley & Sons, New York, USA, 1999
  14. Sklar, L., Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics,Cambridge University Press, Cambridge, UK, 1993
  15. Yi, S. W., Reduction of Thermodynamics: A Few Problems, Philosophy of Science, 70 (2003), 5, pp. 1028-1038
  16. Weinstein, S., Objectivity, Information and Maxwell's Demon, Philosophy of Science, 70 (2003), 5, pp. 1245-1255
  17. ***, Physical Encyclopedia (Ed. A. M. Prokhorov) (in Russian), Great Russian Encyclopedia, Moscow, 1998
  18. Duff, M. L., Okun, L. B., Veneziano, G., Trialogue on the Number of Fundamental Constants, Journal of High Energy Physics, 0203 (2002), 023
  19. Tolman, R. C., Relativity, Thermodynamics and Cosmology, Clarendon Press, Oxford, UK, 1969
  20. Wilczek, F., On Absolute Units II: Challenges and Responses, Physics Today, 59 (2006), 1, pp. 10-11
Volume 13, Issue 4, Pages253 -258