ON THE GOODMAN HEAT-BALANCE INTEGRAL METHOD FOR STEFAN LIKE-PROBLEMS
Abstract
Since the pioneering studies of Goodman on the application of the integral method to transient non-linear heat diffusion, much attention has been devoted nowadays to what is called heat balance integral method. The present paper considers this technique fifty years later. The genesis and earlier developments, when applied to Stefan like-problems, are reported hereafter. Its simplicity and efficiency are demonstrated. Some numerical results obtained using methods developed on the basis of the heat balance integral are compared. Furthermore, for problems including temperature profile behaviour, such as Stefan problem with forcing term (source or sink) this technique gives highly precise results and may, in some cases, lead to exact solutions.
Dates
- Submission Date2008-04-04
- Revision Date2008-05-15
- Acceptance Date2008-06-15
References
- Goodman, T. R., The Heat-Balance Integral and It's Application to Problems Involving a Change of Phase, Trans. ASME, 80 (1958), 2, pp. 335-345
- Goodman, T. R., This Week's Citation Classic, Current Contents, 23 (1983), 1, p.18
- Sucec, J., Extension of Modified Integral Method to Boundary Conditions of Prescribed Surface Heat Flux, Int. J. Heat Mass Transfer, 22 (1979), 5, pp. 771-774
- Zien, T. F., Approximate Analysis of Heat Transfer in Transpired Boundary Layers with Effects of Prandtl Number, Int. J. Heat Mass Transfer, 19 (1976), 5, pp. 513-521
- Kutluay, S., Wood, A. S., Esen, A., A Heat Balance Integral Solution the Thermistor Problem with a Modified Electrical Conductivity, Appl. Math. Modelling, 30 (2006), 4, pp. 386-394
- Wood, A. S., Kutluay, S., A Heat Balance Integral Model for Thermistor, Int. J. Heat Mass Transfer, 38 (1995), 10, pp. 1831-1840
- Sahu, S. K., Das, P. K., Bhattacharyya, S., A Comprehensive Analysis of Conduction-Controlled Rewetting by the Heat Balance Integral Method, Int. J. Heat Mass Transfer., 49 (2006), 25-26, pp. 4978-4986
- Hristov, J., An Inverse Stefan Problem Relevant to Boilover: Heat Balance Integral Solutions and Analysis, Thermal Science, 11 (2007), 2, pp. 141-160
- El-Genk, M. S., Improvements to the Solution of Stefan-Like Freezing and Melting Problems, with Application to LMFBR Safety Analysis, Approximate Analysis of Heat Transfer in Transpired Boundary Layers with Effects of Prandtl Number, Ph. D. dissertation, University of New Mexico, Albuquerque, N. Mex., USA, 1978
- Myers, T. G., et al., A Cubic Heat Balance Integral Method for One-Dimensional Melting of a Finite Thickness Layer, Int. J. Heat Mass Transfer., 50 (2007), 25-26, pp. 5305-5317
- Mitchell, S. L., Myers, T. G., Approximate Methods for One-Dimensional Solidification from an Incoming Fluid, Appl. Math. Comput., (2008), doi:10.1016/j.amc.2008.02.031
- Poots, G., On the Application of Integral-Methods to the Solution of Problems Involving the Solidification of Liquids Initially at Fusion Temperature, Int. J. Heat Mass Transfer, 5 (1962), 6, pp. 525-531
- Caldwell, J., Kwan, Y. Y., Starting Solutions for the Boundary Immobilisation Method, Commun. Numer. Meth. Engng, 21 (2005), 6, pp. 289-295
- Caldwell, J., Chan, C. C., Spherical Solidification by Enthalpy Method and the Heat Balance Integral Method, Appl. Math. Modelling, 24 (2000), 1, pp. 45-53
- Bell, G. E., Solidification of a Liquid about Cylindrical Pipe, Int. J. Heat Mass Transfer, 22 (1979), 12, pp. 1681-1686
- Ren, H. S., Application of the Heat Balance Integral to an Inverse Stefan Problem, Int. J. Thermal Sciences, 46 (2007), 2, pp. 118-127
- Poots, G., An Approximate Treatment of a Heat Conduction Problem Involving a Two-Dimensional Front, Int. J. Heat Mass Transfer, 5 (1962), 5, pp. 339-348
- Riley, D. S., Duck, P. W., Application of the Heat-Balance Integral Method to the Freezing of a Cuboid, Int. J. Heat Mass Transfer, 19 (1976), 3, pp. 294-296
- Goodman, T. R., The Heat Balance Integral - Further Considerations and Refinements, Trans. ASME J. of Heat Transfer, 83 (1961), 1, pp. 83-88
- Volkov, V. N., Li-Orlov, V. K., A Refinement of the Integral Method in Solving the Heat Conduction Equation, Heat Transfer Sov. Res., 2 (1970), 2, pp. 41-47
- Olguin, M. C., et al., Behaviour of the Solution of a Stefan Problem with Changing Thermal Coefficients of the Substance, Appl. Math. Comput., 190 (2007), 1, pp. 765-780
- Goodman, T. R., Application of Integral Methods to Transient Nonlinear Heat Transfer (Eds. T. F. Irvine Jr. & J. P. Hartnett ), in: Advances in Heat Transfer, Academic Press, New York, USA, 1964, Vol. I, pp. 51-122
- Mosally, F., Wood, A. S., Al-Fhaid, A., An Exponential Heat Balance Integral Method, Appl. Math. Comput.,130 (2002), 1, pp. 87-100
- Vujanovic, B., Djukic, Dj., On One Variational Principle of Hamilton's Type for Nonlinear Heat Transfer Problem, Int. J. Heat Mass Transfer, 15 (1972), 5, pp. 1111-1123
- Langford, D., The Heat Balance Integral Method, Int. J. Heat Mass Transfer, 16 (1973), 12, pp. 2424-2428
- Sadoun, N., Si-Ahmed, E. K., On the Double Integral Method for Solving Stefan Like-Problems, Proceedings, 1st International Thermal and Energy Congress, Marrakesh, Morocco, 1993, Vol. 1, pp. 87-91
- Hamill, T. D., Bankoff, S. G., Maximum and Minimum Bounds of Freezing-Melting Rates with Time Dependent Boundary Conditions, A. I. Ch. E. Journal, 9 (1963), 6, pp. 741-744
- Elmas, M., On the Solidification of the Warm Liquid Flowing over a Cold Wall, Int. J. Heat Mass Transfer, 13 (1970), 6, pp. 1060-1062
- Mennig, J., Özisik, M. N., Coupled Integral Approach for Solving Melting and Solidification, Int. J. Heat Mass Transfer, 28 (1985), 8, pp. 1481-1485
- Bell, G. E., A Refinement of the Heat Balance Integral Method Applied to Melting Problem, Int. J. Heat Mass Transfer, 21 (1978), 11, pp. 1357-1362
- Noble, B., Heat Balance Methods in Melting Problems, in: Moving Boundary Problems in Heat Flow and Diffusion (Eds. J. R. Ockendon, W. R. Hodgkins), Clarendon Press, Oxford, UK, 1975, pp. 208-209
- Stefan, J., On the Theory of the Ice, in Particular about the Ice in Polar Seas (in German), Annalen der Physik und Chemie, 42 (1891), 2, pp. 269-286
- Carslaw, H. S., Jaeger, J. C., Conduction of Heat in Solids, Oxford University Press, Oxford, UK, 1956
- Crank, J., Free and Moving Boundary Problems, Clarendon Press, Oxford, UK, 1984
- von Kármán Th., On the Laminar and Turbulent Friction (in German), Zs. F. Angew. Math. U. Mech. Bd., 1 (1921), 4, pp. 233-253
- Pohlhausen, K., On the Approximate Integration of the Laminar Boundary Layer Differential Equation (in German), Zs. F. Angew. Math. U. Mech. Bd., 1 (1921), 4, pp. 252-268
- Fox, L., What Are the Best Numerical Methods?, in: Moving Boundary Problems in Heat Flow and Diffusion (Eds. J. R. Ockendon, W. R. Hodgkins), Clarendon Press, Oxford, UK, 1975, pp. 210-241
- Wood, A. S., A New Look at the Heat Balance Integral Method, Appl. Math. Modelling, 25 (2001), 10, pp. 815-824
- Tani, I., On the Solution of the Laminar Boundary Layer Equations, Jour. Camb. Phil. Soc., 50 (1954), 3, pp. 454-465
- Sadoun, N., Si-Ahmed, E. K., A New Analytical Expression for the Freezing Constant in the Stefan Problem with Initial Superheat, in: Numerical Methods in Thermal Problems (Eds. R. W. Lewis, P. Durbetaki), Pineridge Press, Swansea, UK, 1995, Vol. 2, pp. 843-854
- Sadoun, N., Si-Ahmed, E. K., Colinet, P., On the Refined Heat Balance Integral Method for the One-Phase Stefan Problem with Time-Dependent Boundary Conditions, Appl. Math. Modelling, 30 (2006), 6, pp. 531-544
- El-Genk, M. S., Cronenberg, A. W., Some Improvements to the Solution of Stefan Like-Problems, Int. J. Heat Mass Transfer, 22 (1979), 1, pp. 167-170
- Bell, G. E., Accurate Solution of One-Dimensional Melting Problems by the Heat Balance Integral Method, in: Numerical Methods in Thermal Problems (Eds. R. W. Lewis, K. Morgan), Pineridge Press, Swansea, UK, 1979, pp. 196-203
- Mosally, F., Wood, A. S., Al-Fhaid, A., On the Convergence of the Heat Balance Integral Method, Appl. Math. Modelling, 29 (2005), 10, pp. 903-9012
- Bell, G. E., Abbas, S. K., A Convergence Properties of Heat Balance Integral Method, Num. Heat Transfer, Part A: Application, 8 (1985), 3, pp. 373-382
- Sadoun, N., Si-Ahmed, E. K., Legrand, J., A Refined Exponential Heat Balance Integral Method for One-Phase Stefan Problem, Proceedings, 2nd International Conference on Thermal Engineering: Theory and Applications (Eds. S. Chacha et al.), Al-Ain, United Arab Emirates, 2006, pp. 528-532
- Fasano, A., Primicerio, M., Free Boundary Problems for Nonlinear Parabolic Equations with Nonlinear Free Boundary Conditions, J. Math. Anal. Appl., 72 (1979), 1, pp. 247-273
Volume
13,
Issue
2,
Pages81 -96