A LATTICE BOLTZMANN COUPLED TO FINITE VOLUMES METHOD FOR SOLVING PHASE CHANGE PROBLEMS

Abstract

A numerical scheme coupling lattice Boltzmann and finite volumes approaches has been developed and qualified for test cases of phase change problems. In this work, the coupled partial differential equations of momentum conservation equations are solved with a non uniform lattice Boltzmann method. The energy equation is discretized by using a finite volume method. Simulations show the ability of this developed hybrid method to model the effects of convection, and to predict transfers. Benchmarking is operated both for conductive and convective situation dominating solid/liquid transition. Comparisons are achieved with respect to available analytical solutions and experimental results.

Dates

  • Submission Date2008-09-09
  • Revision Date2009-02-17
  • Acceptance Date2009-02-26

DOI Reference

10.2298/TSCI090205E

References

  1. Bouzidi, M., Firdaouss, M., Lallemand, P., Momentum Transfer of a Boltzmann-Lattice Fluid with Boundaries, Phys. Fluids, 13 (2001), 11, pp. 3452-3459
  2. Chen, S., Doolen, G., Lattice Boltzmann Method for Fluid Flows, Annual Review of Fluid Mechanics, Annual Reviews, Palo Alto, Cal., USA, 30 (1998), January, pp. 329-364
  3. Ginzburg, I., Steiner, K., A Free-Surface Lattice Boltzmann Method for Modelling the Filling of Expanding Cavities by Bingham Fluids, Phil. Trans. R. Soc. Lond. A, 360 (2002), March, pp. 453-466
  4. Alexander, F. J., Chen, S., Sterling, J. D., Lattice Boltzmann Thermohydrodynamics, Physical Review E, 47 (1993), 4, pp. R2249-R2252
  5. Bhatnagar, P., Gross, E., Krook, M., A Model for Collision Process in Gases, I: Small Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev. E, 94 (1954), 3, pp. 511-525
  6. Chen, S., Doolen, G., Lattice Boltzmann Method for Fluid Flows, Annual Review of Fluid Mechanics, Annual Reviews, Palo Alto, Cal., USA, 30 (1998), January, pp. 329-364
  7. Ginzburg, I., Steiner, K., A Free-Surface Lattice Boltzmann Method for Modelling the Filling of Expanding Cavities by Bingham Fluids, Phil. Trans. R. Soc. Lond. A, 360 (2002), March, pp. 453-466
  8. Ganaoui, M. El, et al., Computational Solution for Fluid Flow under Solid/Liquid Phase Change Conditions, Int. J. Computers and Fluids, 31 (2002), 4-7, pp. 539-556
  9. Gau, C., Viskanta, R., Melting and Solidification of a Metal System in a Rectangular Cavity, Int. J. Heat Mass Transfer, 27 (1984), 1, pp. 113-123
  10. Frisch, U., Hasslacher, B., Pomeau, Y., Lattice Gas Automata for the Navier Stokes Equation, Phys. Rev. Lett., 56 (1986), 14, pp. 1505-1508
  11. Bhatnagar, P., Gross, E., Krook, M., A Model for Collision Process in Gases, I: Small Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev. E, 94 (1954), 3, pp. 511-525
  12. Hou, S., et al., Simulation of Cavity Flow by the Lattice Boltzmann Method, J. Comput. Phys., 118 (1995), 2, pp. 329-347
  13. Shu, C., Peng, Y., Chew,Y. T., Simulation of Natural Convection in a Square Cavity by Taylor Series Expansion and Least Squares-Based Lattice Boltzmann Method, International Journal of Modern Physics C, 13 (2002), 10, pp. 1399-1414
  14. Peyret, R., Taylor, T. D., Computational Methods for Fluid Flow, Springer-Verlag, New York, USA, 1983
  15. Mohamad, A. A., Applied Lattice Boltzmann Method for Transport Phenomena, Momentum, Heat and Mass Transfer, Sure Printing, Calgary, Alberta, Canada, 2007
  16. Leonard, B. P., Mokhtari, S., Beyond First Order Upwinding: The ULTRA-SHARP Alternative for Non-Oscillatory Steady-State Simulation of Convection, Int. J. Numerical Methods Eng, 30 (1990), 4, pp. 729-766
  17. Semma, E. A., El Ganaoui, M. , Bennacer, R., Lattice Boltzmann for Melting/Solidification Problems, Comptes Rendus Mécanique, 335 (2007), 5-6, pp. 295-303
  18. Semma, E. A, El Ganaoui, M., Bennacer, R., Mohamad, A. A., Investigation of Fows in Solidifcation by Using the Lattice Boltzmann Method, International Journal of Thermal Sciences, 47 (2008), 3, pp. 201-208
  19. Filippova, O., Hänel, D., Grid Refinement for Lattice - BGK Models, J. Comp. Phys., 147 (1998), 1, pp. 219-228
  20. Mei, R., Luo, L-S., Shyy, W., An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method, J. Comp. Phys, 155 (1999), 2, pp. 307-329
  21. de Vahl Davis, G., Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution, Int. J. Numerical Methods in Fluids, 3 (1983), 3, pp. 249-264
  22. Ozisik, M. N., Heat Conduction, John Wiley and Sons, New York, USA, 1980
  23. Rathjen, K.A., Jiji, L. M., Heat Conduction with Melting or Freezing in a Corner, J. Heat Transfer, 93 (1971), 1, pp. 101-109
  24. Brent, A. D., Voller, V. R., Reid, K., The Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal, J. Num. Heat Transfer B, 13 (1988), 3, pp. 297-318
  25. Semma, E. A., et al., High Order Finite Volume Scheme for Phase Change Problems. Finite Volumes for Complex Applications IV (Eds. F. Benkhaldoun, D. Ouazar, S. Raghay), Hermés Science Publishing Ltd., London, 2005, pp. 493-503
  26. Stella, F., Giangi, M., Melting of a Pure Metal on a Vertical Wall: Numerical Simulation, Numerical Heat Transfer A, 38 (2000), 2, pp. 193-208
  27. Campbell, T. A., Koster, J. N., Visualization of Liquid-Solid Interface Morphologies in Gallium Subject to Natural Convection, J. Crystal Growth, 140 (1994), 3-4, pp. 414-425
  28. Lacroix, M., Voller, V. R., Finite Difference Solutions of Solidification Phase Change Problems: Transformed Versus Fixed Grids, Numerical Heat Transfer B, 17 (1990), 1, pp. 25-41
Volume 13, Issue 2, Pages205 -216