DIFFUSION MODELS AND SCALE-UP

Abstract

A model for transfer processes in column apparatuses has been done. The model may be modified for different apparatuses as columns with (or without) packet bed, two (or three) phase airlift reactors and fluidized bed reactors. The mass transfer is result of different volume reactions as a chemical, photochemical, biochemical or catalytic reactions or interphase mass transfer. The using of the average velocities and concentration permit to solve the scale - up problems. A hierarchical approach for model parameter identification has been proposed. Key words: diffusion model, scale - up, average velocity, average concentration, scale effect, column, airlift, fluidized bed, volume reaction.

Dates

  • Submission Date2004-01-11
  • Revision Date2005-02-10
  • Acceptance Date2005-02-15

References

  1. Boyadjiev, Chr.: Fundamentals of Modeling and Simulation in Chemical Engineering and Technology, Bulg. Acad. Sci, Sofia, 1993
  2. Scale - up in Chemical Technology, Edited by A. M. Rozen, "Chemistry",Moscow, 1980
  3. Boyadjiev, L., Boyadjiev, Chr.: On the longitudinal mass transfer in column for liquid-liquid extraction, Chem. Eng. J., 6, (1973), 2, pp. 107-110
  4. Masry, Al. W. A., Abasaeed, A. E.: On the scale - up of external loop airlift reactors, Newtonian systems, Chem. Eng. Sci., 53, (1998), 11, pp. 4085-4091
  5. Oey, R. S., Mudde, R. F., Portela, L. M., van den Akker, H. E. A.: Simulation of a slurry airlift using two - fluid model, Chem. Eng. Sci., 56, (2001), 3, pp. 673-678
  6. Deckwer, W. O., Schumpe, A.: Improved tools for bubble column reactor design and scale - up, Chem. Eng. Sci., 48, (1993), 5, pp. 889-896
  7. Kluytmans, J. H. J., van Wachem, B. G. M., Kuster, B. F. M., Schowten, J. C.: Design of an Industrial size airlift loop redox cycle (ALRC) reactor for catalytic alcohol oxidation and catalyst reactivation, Ind. Eng. Chem. Res., 42, (2003), 20, pp. 4174-4185
  8. Frohlich, B. T., Webster, T. A., Ataai, M. M., Sculer, M. L.: Fhotobioreactors, Models for interaction of light intensity, reactor design and algae physiology, Biotechnol. Bioeng. Symp., 13, (1983), 2, pp. 331-350
  9. Oka, S. N., Fluidized Bed Combustion, Marcel Dekkor, Inc. New York, Basel, 2003
  10. Lee JK and Low GS, productivity of out doors algae cultures in enclosed tubular photobioreactor. Biotechnol. Bioeng., 40, (1992), 5, pp. 1119-1122
  11. Ogbonna JC, Yada H, Masu H and Tanaka H, A novel internally illuminated stirred tank photobioreactor for large scale cultivation of photosynthetic cells. J Fermentat Bioengug., 82, (1966), 1, pp. 61-67
  12. Prokop A and Erickson LE, Photobioreactors, in Boireactor System Design, Ed by Asenjo JA and Merchuk JC, Marcel Decker, NY 1994
  13. Merchuk JC, Ladwa JC and Bulmer M, Improving the airlift reactor: the helical flow promoter, in Bioprocesses and Bioreactor Fluid Dynamics, Ed by Ninehow A, BHRA - Elsevier, 1993, pp. 61-68
  14. Merchuk JC and Gluz M, Airlift reactors, in Encyclopedia of Bioprocess Technology, Ed by Flickinger MC and Drew SW, John Wiley & Sons, New York, 1999, pp. 320-353
  15. Schlotelburg C, Gluz M, Popovic M and Merchuk JC, Characterization of an airlift reactor with helical flow promoters. Canadian J Chem Eng., 77 (1999), 4, pp. 804-810
  16. Merchuk JC, Gluz M, Mukmenev I, Comparison of photobioreactors for cultivation of the red micro alga Porphyridium sp, J. Chem. Technol. Biotechnology, 75 (2000), 5, pp.1119-1126
  17. Mc Mullen AK, Miyauchi T and Vermenlen T, UCRI - 3911, U.S. Atomic Energy Comm., 1958
  18. Miyauchi T, Vermeulen T, Longitudinal dispersion in two-phase continuous-flow operations, Jnd. Eng Chem (Fund), 2 (1963), 2, pp. 113-126
  19. Miyauchi T, Oya H, Longitudinal dispersion in pulsed perforated-plate columns, AIChE Journal, 11 (1965), 3, pp. 395-402
  20. Heijnen, J. J.; Hols, J.; van der Lans, R. G. J. M.; van Leeuwen, H. L. J. M.; Weltevrede, R. A simple hydrodynamic model for the liquid circulation velocity in a full-scale 2-phase and 3-phase internal airlift reactor operating in the gas recirculation regime. Chem. Eng. Sci., 52 (1997), 15, pp. 2527-2533
  21. Abashar, M. E.; Narsingh, U.; Rouillard, A. E.; Judd, R. Hydrodynamic flow regimes, gas holdup, and liquid circulation in airlift reactors. Ind. Eng. Chem. Res., 37, (1998), 4, pp. 1251-1258
  22. Camarasa, E.; Meleiro, L. A. C.; Carvalho, E.; Domingues, A.; Maciel Filho, R.; Wild, G.; Poncin, S.; Midoux, N.; Bouillard, J. A complete model for oxidation airlift reactors. Comput. Chem. Eng., 25, (2001), 4-6, pp. 577-584
  23. Markusse, A. P.; Kuster, B. F. M.; Schouten, J. C. Platinum catalyzed aqueous alcohol oxidation: experimental studies and reaction model discrimination. J. Mol. Catal., 158, A (2000), 1, pp. 215-222
  24. Markusse, A. P.; Kuster, B. F. M.; Schouten, J. C. Platinum catalyzed aqueous methyl-Α-D-glucopyranoside oxidation in a multi-phase redox-cycle reactor. Catal. Today, 66, (2001), 2-4, pp. 191-197
  25. Gandwal VR, van Wachem BGM, Kuster BFM and Schouten J.C., Platinum catalyzed aqueous alcohol oxidation: model-based investigation of reaction condition and catalyst design, Chem. Eng. Sci., 57 (2002), 17, pp. 5051-5063
  26. Boyadjiev, Chr., Dimitrova, E., An Iterative Method for Model Parameters Identification. 1.Incorrect problem, Proceedings, Sunny Beach'03, 8th Workshop on Transport phenomena in Two-Phase Flow, Sunny Beach, Bulgaria, September 13-18, 2003, pp. 105-123
  27. Dimitrova, E., Boyadjiev, Chr., An Iterative Method for Model Parameters Identification. Essentially Incorrect problem, Proceedings, Sunny Beach'03, 8th Workshop on Transport phenomena in Two-Phase Flow, 2003, pp. 123-133.
Volume 9, Issue 1, Pages43 -71